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Abstract— Recent progress in embodied AI makes robotics
close to reality but it is still an open question how the agent can
do manipulation tasks following human guidance. It is essential
for robot agents to complete manipulation tasks with language
guidance from humans. By following the language instructions,
robots can 1) pay more attention to the target place or objects
that humans are concerned about and 2) have more information
in scene understanding like inter-object relation. Among all
existing algorithms, the state-of-the-art robot-centric Perceiver-
Actor works well in multiple housing tasks (e.g. pick, place and
stack) in RLBench[1]. This project re-implements Perceiver-
Actor [2], tests the result on the tasks on VLMbench dataset
[3] that has not been tested on Perceiver-Actor yet.

I. PROBLEM STATEMENT

A. Language-Conditional Manipulation

Language-conditioned manipulation is a widely studied
area. Existing vision language manipulation (VLM) algo-
rithms [4] [5] [3] [6] [7] have demonstrated impressive
performance on object manipulation tasks. While CLIPort
proposed by [4] only deals with 3 DoF desktop object
rearrangement tasks, the follow-up work [3] extends CLIPort
to 3D environment with 6-DoF manipulation. Unlike the
other three papers, StructFormer proposed in [6] uses object-
centric model in object rearrangement (i.e. directly predicting
the relative pose of objects) and has good results on the
specific shape formation tasks. StructDiffusion [7] improves
the performance of StructFormer by incorporating diffusion
model in the pipeline. However, StructFormer and StructD-
iffusion focus on object rearrangements. In addition, [6] and
[7] use pre-segmented pointcloud which is not accessible
in general. Perceiver-Actor proposed by [5], which achieves
record-breaking performance in general language-conditional
tasks. All of the above works solve language-conditional
tasks in static environment. Our work will generalize to
dynamic grasping tasks with language inference.

B. Transformer for Manipulation

Transformer was first outperformed in Natural Language
Processing impressively [8], before which it shows a rev-
olutionary level of performance in computer vision and
biology [9][10][11]. In manipulation, applying transformer
on imitation learning for manipulation [12] can increase
the success rate of not only grasp but also flip on dual-
arm robots dramatically(more than 50%). Also, by using
Perceiver Transformer, others can encode language goals and
voxel observations for better data enhancement[13].

C. End-To-End Manipulation

It witnesses a huge success on end-to-end manipulations,
like applying on vision-based manipulation[14] that can im-
prove the task of grasp success rate[15]. End-to-end learning
is also applied in interactive estimation and demonstrative-
guided goal strategies[16][17]. Also, end-to-end learning of
binding vision and control has shown an incredible success
rate increase, even achieved 100% with hanging a coat
hanger[18].

II. INTRODUCTION

The task of our interest is to encode language goals and
RGB-D visual observations and output end-to-end actions
until completion of the goals. As shown in Fig. 1, the
algorithm we choose is Perceiver-Actor, a behavior-cloning
agent to complete multi-task for 6-DoF manipulation. The
core of this framework is the encoding of visual images as
voxel sequence and the use of transformer-like PerceiverlO
which provides a strong structural prior for efficient learning.

There are two contributions in this project:

1) Testing Perceiver-Actor on VLMbench to test the ro-

bustness of the framework.

2) Open source code for re-implemention of Perceiver-

Actor architecture and its APIs to VLMbench
dataset. https://github.com/Xihang YU630/perceiver-actor-
vlmbench.git

III. PRELIMINARY
A. Transformer

It is worth mentioning that Perceiver-Actor uses voxels
from multi-view observations to represent objects which
is an alternative compared to previous methods that use
pointcloud[6], key points [19]. This leads to a question that
how to design a network that fits in the memory of modern
GPU to encode sequential language and voxel data while
reasoning the relation among language tokens and voxels.
Transformer[8] is the natural choice for sequential data pro-
cessing. This network is originally from Natural Language
Processing community but has shown huge potential in recent
robot learning [6] [20] [21].
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At the core of Transformer is the dot-product attention
function(1). Attention module takes a length-n input and
output a sequence of the same length. Each input is linearly
mapped to a query, key and value. The output is computed

Attention(Q, K, V') = softmax (
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Fig. 1: PerceiverlO Transformer: A behavior-cloning agent to complete multi-task for 6-DoF manipulation. Given space discretized voxels and language
instruction and outputs next waypoint gripper translation, orientation and gripper open state.

as a weighted sum of the values. The weight of each value
is computed based upon query with its key. We refer readers
to the original Transformer paper[8] for more details.

B. QO-Learning

Q-learning is an algorithm in model-free reinforcement
learning, i.e. unknown transition function. The formal defi-
nition of Q-learning uses Bellman equation, which basically
refers to maximize a reward function by random select best
actions according to a Q function as follows:

Q(s,a) = Q(s, a) + a(R(s,a) + ymax Q(s',a') = Q(s,a))

where (s, a) is the current state-action pair, (s’,a’) is
the next state-action pair, o the learning rate and v the
discount factor. The Q function is to measure potential future
rewards from being in this states. Q function design will be
introduced in Sec. IV.

C. Large Language Model

Large Language Model is used to capture the semantic
information in natural language. Since the language model
is trained on large text corpora, it outputs word token
embedding and serves as pre-processing of language. One
large language model is CLIP[22], which is trained with
large amounts of image-caption pairs. It serves as a semantic
prior for grounding visual concepts like colors, shapes and
object categories. For instance, in a sentence "pick up the
red cube in the front of the green bottle." CLIP may relate
color "red cube" and "green bottle" in the sentence with the
corresponding "red cube" and "green bottle" in a image,
thereby network pay more attention to the two parts of
manipulation interests.

IV. PERCEIVER-ACTOR

Perceiver-Actor is a Transformer-based behavior-cloning
network. Given space discretized voxels and language in-
struction and outputs next waypoint gripper translation, ori-
entation and gripper open state. This action is then executed
with motion planner to command joints of manipulator until
convergence to goal position.

The language instruction [ is encoded using pre-trained
large language model. In [5], it uses CLIP[22]. Learned
position embeddings are incorporated along with language
embeddings. For images data, they are firstly used to con-
struct 3D scene as 1003 and then the voxels v are divided
into patches of size 5% and finally vectorized into a flattened
sequence. However, there is an input of (100/5)% = 8000
patches which is hard to fit in the memory of modern GPU
if we use plain transformer. Instead, Perceiver Transformer
[23] is used. This transformer computes the cross-attention
between inputs and selects a much smaller size of latents.
The original paper used 2048 latents but in our experiment,
512 is used due to smaller memory size of local GPU.

6 self-attention layers are used to encode the latents and
output a sequence of patch encodings. Then the output is
decoded to 64-dimension voxel features by passing through
an upsampling 3D convolutional layers. The skip-connection
step is like in U-Net [24]. The voxel features are used to
predict actions: translation, orientation, gripper open state,
collision state. Q functions are as follows. For translation
(x,y,2), the voxel features are reshaped into 100® grid
scale to form 3D Q-function of actions Qyrans((2,y, 2)|v, ).
Orientation, gripper open state, collision state are predicted
by first passing through max-pooling layer to reduce dimen-
sion and then MLP linear layer to predict actions. Euler
angles (£,0,¢) are used to represent orientation. For each
state, we choose the action that maximize the Q functions:
Qrot((&v 0, ¢)|'Ua l)’ Qopen(w|va l)’ Qcollide(ﬁ‘va l)

Perceiver-Actor chooses loss function like cross-entropy
as follows:

Ltotal = _Etrans [log(vvtrans)] -

_Eopen [log(vopen)} -

where

Erot [log(vvrot)]

Ecottide [10g(Veottide )]

V;Srans = SOftmaX(Qtrans((w7 Y, Z) ‘U, l))
Viot = softmax(th((ﬁ, 0, ¢) |1)7 l))
Vopen = softmax(Qopen (w]v, 1))

Veoltide = softmax(Qcotrige (Blv,1)).
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Fig. 2: Encoding module of CLIPort-6D. There are three streams which
encode RGB-D images, RGB images and language data separately and then
fuse them together. Output is a pixel-wise feature map.

V. CLIPORT-6D

To serve as baseline, we introduce CLIPort-6D, a CLIPort-
based behavior cloning agent introduced in [3]. This agent
takes in multi-view RGB-D images and language goal as
Perceiver-Actor and outputs 6 DoF pose waypoints until
complishment of work.

The core of this network is the encoding module that fuse
visual and language data to obtain a pixel-wise feature map
as shown in 2. This feature map serves as a concise scene
representation that are used for object detection and grasp
pose selection, i.e. higher value areas are more likely to be
the parts of our interests. For more architecture details, we
refer readers to the original paper[3].

VI. EXPERIMENT

The experiment is set up in CoppeliaSim and PyRep.
We use open door dataset of 36.8GB that is one task in
VLMbench. We use multi-view camera images collected
from VLMbench and long language description as input.
To reconstruct high-quality voxelized scene representation
shown in Fig. 3, we use five cameras in the front of table,
at the left shoulder of table, at the right shoulder of table,
at the wrist and overhead. The experiment metric is as
follows: If the distance error between predicted keyframe
translation voxel (q) and ground truth (§) is less than a fixed
threshold (9), we say that the experiment is successful. In
the experiment, threshold is set to be 5.2 voxel length.

e=lg—q <9
A. Model

Serving as the first try, we test the performance of
CLIPort-6D. After observing the poor performance of the
baseline algorithm, we test Perceiver-Actor with some minor
implementation difference. To be more specific, we use the
aforementioned CLIPs [22] language encoder as in Perceiver-
Actor. We input language embedding from CLIP and RGB-D
voxel observations with a PerceiverIO[23]. In action infer-
ence, action output is from Q-learning network composed of
Maxpooling layer followed by MLP.

B. Training Protocal

All experiment is done on CoppeliaSim simulator. Dif-
ferent from original Perceiver-actor which uses LAMB[25]
optimizer, we use Adam optimizer with 0.00001 learning
rate for multiple epochs. This is because we notice the
phenomenon of vanishing gradient to use Lamb. The batch

TABLE I: Performance of CLIPort-6D in multiple tasks
task door drawer place  pour water  wipe table
success rate  0.01 0.09 0.036 0.004 0.026

size is set to be 1 to fit the model on a single local NVIDIA
3080ti GPU. We train the Perceiver-Actor for 1-4 epochs for
30-100 minutes. The voxel size is set to be 100% so that the
total number of voxels in the space is 1 million. We use 512
latents in PerceiverlO.

VII. RESULTS
A. Baseline

The first experiment is to test five tasks on VLMbench
using baseline algorithm CLIPort-6D. As shown in Table. I,
among all five tasks, only opening drawer scores success rate
more than 5% while pouring water and opening door have
less than or equal to 1% success rate. The poor result may
due to 3D cloud points projection onto 2D plane which lose
part of geometric information. This experiment motivates
us to explore other algorithms like Perceiver-Actor, which
preserves 3D information by using 3D voxels.

B. Comparison with Zero-Shot Model

In Fig. 3, we demonstrate the performance comparison
between zero-shot model and trained model. As we can see
in the leftmost figure, red voxels are the predicted translation
and the blue voxel is the ground truth value. The turquoise
gripper is the visualization of the predicted orientation of the
end effector. We can see that the predicted translation and
orientation is far from ground truth. In contrast, the right 4
figures from the same sequence demonstrate the successful
prediction. In this demo, the end effector gets close to the
door, grasp the door gripper and slightly open the door. The
predicted translations and orientations are close to ground
truth, which shows the effect of the model.

C. Comparison Through Epochs

We compare the performance of convergence using
Perceiver-Actor as the number of epochs goes up in Fig.
4. We can observe an increasing trend with a convergence
to 52.23% after 2 epochs. Notice that the number of epochs
range from O to 3. Notice the number of epochs is small
when in witness of convergence. This may due to the fact
that open door task in VLMbench lacks diversity. It may also
due to lack of generalization of Perceiver-Actor.

VIII. DISCUSSION

In this project, we test the performance of CLIPort-6D.
After fail case analysis, we choose Perceiver-Actor to finish
vision and language tasks. After re-implementing the code,
we also test it on VLMbench which tests the robustness
of the framework. The voxel representation of visual scene
understanding is quite inefficient and expensive in terms of
resource consumption. As shown in Fig. 5, we count the time
for training alone. With batch size 1 and only 3 epochs, it
already takes around 2 hours for training solely on opening
door dataset for one NVIDIA 3080ti GPU. Actually, in the



Fig. 3: Performance comparison between zero-shot model and trained model. Leftmost figure is the predicted keyframe for zero-shot model. 4 figures
on the right are the predicted waypoints in a single play. Red voxels denote the predicted next step translation. The turquoise gripper (without fingers)

demonstrates the predicted orientation.
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Fig. 4: The success rate against number of epochs. 50% success rate is

achieved in opening door dataset.

original paper, it takes 16 days for training with batch size
16 on 8 NVIDIA V100 GPUs. Moreover, in testing step, it
inference at the frequency of 1Hz. The long training time
and low testing frequency is both due to large number of
voxel inputs and thereby large computation.

IX. FUTURE WORK

One issue with the current framework is that it only
predicts several discretized wayframes along the path. As
a result, it is not applicable to dynamic tasks that require
real-time closed-loop reaction. In the field of dynamic ma-
nipulation, the manipulator should detect moving objects and
interact with the dynamic scene in a short time. Due to the
nature of transformer architecture, action sequence can be
generated instead of only one action. Also, the network may
be used to predict velocity of objects in real time as men-
tioned in Perceiver-Actor. Considering these two facts, we
are planning to extend the current work to finish grasp task
in dynamic environment. There are a lot successful works
in this field we can refer to. [26] learns residual velocity
to compensate the uncertainty of a physics-based controller
(known dynamic model like gravitational field). [27] predicts
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Fig. 5: The success rate against number of epochs. It takes 100 minutes to
train the network with batch size 1 for 3 epochs.

a predefined vector flow for articulation objects from vision
and selects the grasp point such that its vector flow with
highest magnitude. To grasp moving objects, a closed-loop
visual feedback controller for dynamic environment features
[28]. After the best grasp pose has been predicted, a velocity
command is computed to make gripper converge to the target
pose. [29] also formulates dynamic grasp as a closed-loop
policy generation problem. In contrast to [28], [29] formu-
lates action policy generation as a Markov Decision Process.
An object-centric approach by [30] uses RNN to predict
future object pose sequence from a sequence of instantaneous
poses. [31] formulates the dynamic problem as a "move-and-
grasp" game and use adversarial reinforcement learning to
train the grasping policy and object moving strategies jointly.
However, semantic inferences using language instruction are
not included in the learning process [31] [28] [29] [30]. The
Perceiver-Actor model may infer the object dynamic model
using language instructions and output a sequence of actions
to grasp the object. For instance, for a sentence "Pick the
red cube circulating the green plate". Language implies the
circular trajectory of the red cube and hence policy generator
and output actions to capture the red cube.
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