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Abstract

This research conducts a thorough comparison between Mixed Integer Quadratic Pro-
gramming (MIQP) and two versions of Semidefinite Programming (SDP) formulations,
specifically tailored for hybrid Model Predictive Control (MPC) in multi-contact scenarios.
Drawing inspiration from linear complementarity (LCP) framework [4] and building upon
Aydinoglu’s work [1], we address the challenges posed by a nonconvex projection subproblem
(LCP) in the Alternating Direction Method of Multipliers (ADMM), a critical obstacle in
real-time, high-dimensional control. The study delves into the complexities of this projection
subproblem and its MIQP formulation (MIQP), exploring the trade-off between speed and
robustness in ADMM and LCP projections, and the robustness but slower performance of
the MIQP projection. Our novel approach integrates SDP with moment relaxation to poten-
tially overcome the computational limitations of these existing methods. Our results reveal
that while SDP does not outpace MIQP in terms of speed, it successfully completes pivoting
tasks where LCP and ADMM projections falter. We delve into the comparison between
two SDP formulations, noting the faster yet suboptimal performance of the LCP-based SDP
and the slower but more accurate results of the MIQP-based SDP. This work provides some
insights into the SDP and MIQP formulations, their implementation, and their implications
in hybrid MPC problems.

1 Introduction
In this research, we focus on developing a SDP formulation tailored for the hybrid MPC prob-
lem, with a special emphasis on multi-contact scenarios framed within a linear complementarity
formulation [4]. Building upon Aydinoglu’s pioneering work [1], which solves an MPC problem
(MPC) for multi-contact issues using ADMM [2] to achieve real-time performance. The original
problem is as follows:

f⋆ = min
xk,λk,uk

N−1∑
k=0

(xT
kQkxk + uT

kRkuk) + xT
NQNxN (MPC)

subject to xk+1 = Axk +Buk +Dλk + d,

Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0,

λT
k (Exk + Fλk +Huk + c) = 0,

(x, λ, u) ∈ C, for k = 0, ..., N − 1, given x0
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However, a nonconvex projection subproblem (LCP) in ADMM remains the hardest part and a
bottle neck of real-time implementation for higher dimension control. 1

ρ⋆LCP =min
δk

(δk − z)TU(δk − z) (LCP)

subject to Eδxk + Fδλk +Hδuk + c ≥ 0,

δλk ≥ 0, δλk
T
(Eδxk + Fδλk +Hδuk + c) = 0.

where z ∈ Rnλ+nx+nu , U ∈ Snλ+nx+nu , E ∈ Rnλ×nx , F ∈ Rnλ×nλ , H ∈ Rnλ×nu , c ∈ Rnλ are
constants. δk := (δxk , δ

λ
k , δ

u
k ) ∈ Rnλ+nx+nu where δxk is the state, δλk is the contact force and δuk is

the control input. Optimization LCP has an MIQP formulation using big M method:

ρ⋆MIQP = min
δk,sk

(δk − z)TU(δk − z) (MIQP)

subject to Msk ≥ Eδxk + Fδλk +Hδuk + c ≥ 0,

M(1− sk) ≥ δλk ≥ 0,

sk ∈ {0, 1}nλ .

where M is a matrix of the M = mI where m is a pre-specified large number. [1] proposes three
methods to solve a projection subproblem in ADMM - MIQP projection, ADMM projection,
LCP projection. Despite faster performance in ADMM and LCP projections, these two methods
suffer from robustness [1]. MIQP prjection, on the other hand, is robust to all experiments
as shown in [1] thanks to optimal guarantee. However, MIQP projection is slow due to the
exponential worst run-time. In the pursuit of enhancing the efficiency of MIQP while keeping
optimal guarantee with rank certificate, this thesis proposes an innovative approach leveraging
semidefinite relaxation. The study delves deep into the integration of SDP and moment relaxation
to formulate complex projection problems, aiming at transcending the computational barriers of
enumeration in MIQP formulation.

Our findings indicate that while SDP does not offer a speed advantage in optimization so-
lutions compared to MIQP, both SDP and MIQP uniquely succeed (while LCP and ADMM
projections fail) in completing the pivoting task. The relatively slower performance of SDP can
be attributed to several factors: (1) the interior point method used in the MOSEK solver is a
general-purpose tool, not specifically optimized for this problem. (2) the problem’s dimension,
approximately 30, is a small scale for MIQP’s enumerative approach. Interestingly, our analysis
revealed some noteworthy observations. The SDP formulation, when based on the LCP, operates
faster but at the expense of increased suboptimality. In contrast, the SDP formulation derived
from an MIQP framework, which incorporates integer decision variables expressed as polynomial
constraints, demonstrates slower execution yet achieves significantly tighter suboptimalities, by
an order of magnitude of 5. We will delve into the details of these two formulations in Section 2
and subsequently discuss the experimental results in Section 3.

2 Semidefinite Relaxation
We observe that the objective function and constraints of Optimization (LCP) are polynomials.
Hence, we can directly apply moment relaxation on the polynomial optimization (POP). However,
we can not apply SDP relaxation to (MIQP) directly since the decision variable sk is integer.

1In ADMM, the projection step is to project the solution back to the nonconvex constraint after solving a
relaxed augmented Lagrangian problem.
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However, the integer constraints can be written in equivalent form:

ρ⋆MIQP = min
δk,sk

(δk − z)TU(δk − z) (1)

subject to Msk ≥ Eδxk + Fδλk +Hδuk + c ≥ 0,

M(1− sk) ≥ δλk ≥ 0,

sk(sk − 1) = 0.

Now the objective function and constraints are polynomials and we can apply SDP relaxation.
Based on the two formulated (LCP) and (1), We can now design the following two semidefinite
relaxations. We call them LCP-based SDP and MIQP-based SDP respectively.

Proposition 1 (LCP-based SDP). The following SDP

f⋆ = minX∈S1+nλ+nx+nu tr (CX) (2)
subject to li ≤

∑
i tr (Ai, X) ≤ ui, i = 1, ..., t

X =


1 δxk

T δλk
T

δuk
T

δxk δxkδ
x
k
T δxkδ

λ
k

T
δxkδ

u
k
T

δλk δλkδ
x
k
T δλkδ

λ
k

T
δλkδ

u
k
T

δuk δukδ
x
k
T δukδ

λ
k

T
δukδ

u
k
T

 ⪰ 0

is a convex relaxation to (LCP) and f⋆ ≤ ρ⋆LCP. Let X⋆ be a global minimizer of (2). If
rank (X⋆) = 1, then X⋆ can be factorized as X⋆ = (x⋆

k)
Tx⋆

k, where x⋆
k ∈ R1+nλ+nx+nu is a global

optimizer to (LCP).

Proof. It is easy to verify that the objective function can be written as:

(δk − z)TU(δk − z) = tr (CX) (3)

where

C =

[
zTUz (−Uz)T

−Uz U

]
(4)

For the constraint Eδxk + Fδλk +Hδuk + c ≥ 0, it can be written in nλ constraints:

−ci ≤ tr (A1,iX) (5)

where ci is ith element of c and A1,i is as follows:

A1,i =


0 1

2Ei
1
2Fi

1
2Hi

( 12Ei)
T 0nx

0nx×nλ
0nx×nu

( 12Fi)
T 0nλ×nx

0nλ
0nλ×nu

( 12Hi)
T 0nu×nx 0nu×nλ

0nu

 (6)

with Ei, Fi, Hi are ith row of E,F,H. For the constraint δλk ≥ 0, it can be written in nλ

constraints:

0 ≤ tr (A2,iX) (7)

where A2,i is as follows:

A2,i =


0 01×nx

1
2e

T
nλ,i

01×nu

0nx×1 0nx 0nx×nλ
0nx×nu

1
2enλ,i 0nλ×nx

0nλ
0nλ×nu

0nu×1 0nu×nx
0nu×nλ

0nu

 (8)
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with enλ,i ∈ Rnλ be unit vector where ith entry is 1 and other entries are all zeros. For the
constraint δλk

T (Eδxk + Fδλk +Hδuk + c) = 0, it can be written as:

tr (A3,iX) = 0 (9)

where A3,i is as follows:

A3,i =


0 01×nx

( 12c)
T 01×nu

0nx×1 0nx
( 12E)T 0nx×nu

1
2c

1
2E

1
2 (F + FT ) 1

2H
0nu×1 0nu×nx

( 12H)T 0nu

 (10)

Similarly, we can prove the following proposition and obtain the second form of SDP:

Proposition 2 (MIQP-based SDP). The following SDP

f⋆ = minY ∈S1+2nλ+nx+nu tr (BY ) (11)
subject to li ≤

∑
i tr (Di, Y ) ≤ ui, i = 1, ..., q (12)

Y =


1 sTk δxk

T δλk
T

δuk
T

sk sks
T
k skδ

x
k
T skδ

λ
k

T
skδ

u
k
T

δxk δxks
T
k δxkδ

x
k
T δxkδ

λ
k

T
δxkδ

u
k
T

δλk δλks
T
k δλkδ

x
k
T δλkδ

λ
k

T
δλkδ

u
k
T

δuk δλks
T
k δukδ

x
k
T δukδ

λ
k

T
δukδ

u
k
T

 ⪰ 0

is a convex relaxation to (MIQP) and f⋆ ≤ ρ⋆MIQP. Let Y ⋆ be a global minimizer of (11). If
rank (Y ⋆) = 1, then Y ⋆ can be factorized as Y ⋆ = (y⋆k)

Ty⋆k, where y⋆k ∈ R1+2nλ+nx+nu is a global
optimizer to (MIQP).

Proof. It is easy to verify that the objective function can be written as:

(δk − z)TU(δk − z) = tr (BY ) (13)

where

B =

 zTUz 01×nλ
(−Uz)T

0nλ×1 0nλ×nλ
0nλ×(nλ+nx+nu)

−Uz 0(nλ+nx+nu)×nλ
U

 (14)

For the constraint Eδxk + Fδλk +Hδuk + c−Msk ≤ 0, it can be written in nλ constraints:

tr (D1,iX) ≤ −ci (15)

where ci is ith element of c and D1,i is as follows:

D1,i =


0 − 1

2Mi
1
2Ei

1
2Fi

1
2Hi

(− 1
2Mi)

T 0nλ
0nλ×nx

0nλ
0nλ×nu

( 12Ei)
T 0nx×nλ

0nx
0nx×nλ

0nx×nu

( 12Fi)
T 0nλ

0nλ×nx
0nλ

0nλ×nu

( 12Hi)
T 0nu×nλ

0nu×nx 0nu×nλ
0nu

 (16)
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with Mi, Ei, Fi, Hi are ith row of M,E,F,H. For the constraint Eδxk + Fδλk + Hδuk + c ≥ 0, it
can be written in nλ constraints:

−ci ≤ tr (D2,iX) (17)

where ci is ith element of c and D2,i is as follows:

D2,i =


0 01×nλ

1
2Ei

1
2Fi

1
2Hi

0nλ×1 0nλ
0nλ×nx

0nλ
0nλ×nu

( 12Ei)
T 0nx×nλ

0nx 0nx×nλ
0nx×nu

( 12Fi)
T 0nλ

0nλ×nx
0nλ

0nλ×nu

( 12Hi)
T 0nu×nλ

0nu×nx 0nu×nλ
0nu

 (18)

with Ei, Fi, Hi are ith row of E,F,H. For the constraint δλk +Msk ≤ M , it can be written in nλ

constraints:

tr (D3,iX) ≤ M (19)

where D3,i is as follows:

D3,i =


0 1

2Mi 01×nx

1
2e

T
nλ,i

01×nu

( 12Mi)
T 0nλ

0nλ×nx
0nλ

0nλ×nu

0nx×1 0nx×nλ
0nx 0nx×nλ

0nx×nu
1
2enλ,i 0nλ

0nλ×nx
0nλ

0nλ×nu

0nu×1 0nu×nλ
0nu×nx

0nu×nλ
0nu

 (20)

For the constraint δλk ≥ 0, it can be written in nλ constraints:

0 ≤ tr (D4,iX) (21)

where D4,i is as follows:

D4,i =


0 01×nλ

01×nx

1
2e

T
nλ,i

01×nu

0nλ×1 0nλ
0nλ×nx 0nλ

0nλ×nu

0nx×1 0nx×nλ
0nx 0nx×nλ

0nx×nu
1
2enλ,i 0nλ

0nλ×nx
0nλ

0nλ×nu

0nu×1 0nu×nλ
0nu×nx

0nu×nλ
0nu

 (22)

For the constraint sk(sk − 1) = 0, it can be written as:

tr (D5,iX) = 0 (23)

where D5,i is as follows:

D5,i =

 0 1
2e

T
nλ,i

01×(nx+nλ+nu)
1
2enλ,i enλ,ie

T
nλ,i

Inλ
0nλ×(nx+nλ+nu)

0(nx+nλ+nu)×1 0(nx+nλ+nu)×nλ
0nx+nλ+nu

 (24)

where Inλ
∈ Rnλ is identity matrix.
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Figure 1: Pivoting a rigid object with two fingers (blue). The object can make and break contact
with the ground and gray areas represent the friction cones.

3 Experiments
Suboptimality. In practice, checking the rank condition of the optimal solution of (2) and (11)
can be sensitive to numerical thresholds. Therefore, we always project X⋆ and Y ⋆ to a solution
δ̂ by Singular Value Decomposition (SVD) that is also feasible for problem (LCP) and (MIQP).
We evaluate the objective of (LCP) and (MIQP) at δ̂, denoted as ρ̂ and satisfies

f⋆ ≤ ρ⋆MIQP = ρ⋆ ≤ ρ̂. (25)

We then compute the relative suboptimality [5, 7]

η =
ρ̂− f⋆

1 + |f⋆|+|ρ̂|
. (26)

Clearly, η = 0 certifies global optimality of the solution δ̂ and tightness of the SDP relaxation.
Setup. In our current study, we replicate the experimental setup previously described and

tested in [1]. To briefly introduce this task, the dynamics of pivoting a rigid object is explored,
inspired by the work of Hogan et al. [3], with an emphasis on balancing it at its midpoint. As
shown in Figure 1, the interaction involves two fingers (denoted in blue), with their positions
relative to the object represented as f1 and f2. The object is characterized by a controlled
normal force exerted by these fingers, a center of mass at positions x and y, an angle α with
the ground, and dimensions w = 1, h = 1. The friction coefficients are set as µ1 = µ2 = 0.1
for the fingers and µ3 = 1 for ground contact. The object, with a mass m = 1 and subject to a
gravitational acceleration g = 9.81, is modeled through an implicit time-stepping scheme [6]. The
system incorporates 3 contact points and is described by 10 states (nx = 10), 10 complementarity
variables (nλ = 10), and 4 inputs (nu = 4). For practical implementation, [1] employs a local LCS
approximation, recalculated at each time step k. The system’s objective is to balance the object
at the midpoint (x = 0, y =

√
2, α = π

4 ) while adjusting the finger positions (f1 = f2 = 0.9). The
controller effectively manages unplanned mode changes caused by process noise, illustrating the
method’s efficacy with successive linearizations in multi-contact systems that defy single LCS
approximations. To compare the time and suboptimality of two SDP solvers and the MIQP
solution to projection step, we vary the Gaussian disturbances in the dynamics, with different
standard deviations (σ = 0.1, 0.5).
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Figure 2: Computational time and suboptimality for LCP-based SDP.

Table 1: Time and suboptimality (σ = 0.5)
LCP-based SDP MIQP-based SDP MIQP

time(s) 9.1449e− 02± 4.4005e− 02 1.5137e− 01± 4.4231e− 02 2.1604e− 02± 2.8890e− 03
duality gap 8.9880e− 06± 1.1486e− 04 1.2949e− 11± 1.2094e− 10 /

Results. In our comparative analysis, we focused on two projection methods: SDP in both
versions and MIQP, which were successful in accomplishing pivoting tasks. In contrast, the LCP
and the ADMM methods were not effective in this regard. We plotted the time (noting that
each iteration included 10 steps in the Hybrid MPC horizon) and average suboptimality (with
σ = 0.5) for each iteration in our sequence of 7000 iterations, as shown in Figure 2 and Figure 3.
Our observations revealed that the iteration time remained stable across the horizon. However,
we noted variability in suboptimality, particularly for the LCP-based SDP, where suboptimalities
around the 1000th iteration were notably higher than in other iterations.

Further, we conducted Monte Carlo experiments with 20 runs for both σ = 0.5 and σ = 0.1,
the results of which are detailed in Table 1 and Table 2. We compute the average of time and
suboptimaltity across 20 experiments and compute standard devision as well. The MIQP method
demonstrated quick problem-solving capabilities and outperformed SDP solvers, possibly due to
the enumeration of a small number of integer variables (nλ = 10). Interestingly, the LCP-based
SDP exhibited faster computation than the MIQP-based SDP. This is because the MIQP-based
SDP needs to handle a positive semidefinite cone decision variable of size 1+2nλ+nx+nu, while
the LCP-based SDP manages a smaller size of 1 + nλ + nx + nu. In terms of constraints, the
MIQP formulation involves 4nλ inequality constraints and nλ equality constraint, whereas the
LCP-based formulation includes 2nλ inequality constraints and one equality constraint. Despite
this, in terms of accuracy, the SDP method with the MIQP formulation showed significantly
better results, by an order of magnitude of 5.

Failure Cases. In this subsection, we want to show that both versions of SDP are incapable
of handling finger gaiting example. Our goal is to lift a rigid object upwards using four fingers.
The setup for this problem is illustrated in Figure 4. The red circles indicate where the grippers
interact with the object, and we assume that the grippers are always near the surface of the object
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Figure 3: Computational time and suboptimality for MIQP-based SDP.

Table 2: Time and suboptimality (σ = 0.1)
LCP-based SDP MIQP-based SDP MIQP

time(s) 9.2539e− 02± 2.8506e− 02 1.5265e− 01± 4.4073e− 02 2.1832e− 02± 2.3884e− 03
duality gap 5.5045e− 06± 9.0045e− 05 1.1824e− 11± 1.0462e− 10 /

and the force they apply on the object can be controlled. This force affects the friction between
the object and grippers. Since the grippers never leave the surface, we assume that there is no
rotation. The goal of this task is to lift the object vertically, while the fingers are constrained
to stay close to their original locations (soft constraints shown in yellow). This task, therefore,
requires finger gaiting to achieve large vertical motion of the object. For detailed setup, please
refer to [1].

We use the formulation in [1] for modeling the system and denote the positions of the grippers
as g(1), g(2) respectively, and the position of the object as o. We choose g = 9.81 as gravitational
acceleration and µ = 1 as the coefficient of friction for both grippers. We also enforce limits:
1 ≤ g(1) ≤ 3,∀k, and 3 ≤ g(2) ≤ 5,∀k. As shown in Figure 5, the MIQP controller managed to
lift the object. Howver, the SDP fail to lift up the objects while constraining both fingers to be
within limits.

4 Conclusions
This project opens up numerous avenues for further exploration.

1. One of the intriguing questions that remain unanswered is why SDP underperforms com-
pared to MIQP.

2. Additionally, it’s unclear why the MIQP-based SDP demonstrates higher accuracy than
the LCP-based SDP.

3. We are also keen to explore the geometric properties of the SDP formulation in the context
of LCP problems. Specifically, we want to understand whether SDP is a geometrically suit-
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Figure 4: Finger gaiting a rigid object with four fingers.
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Figure 5: The performance of MIQP and SDP of both versions in finger gaiting task. We can
see that MIQP successfully lifts the object up 0 (goal position) while SDP fails to do so.

able formulation for LCP problems and what might be lost in the Semidefinite Relaxation
process.

4. Another promising direction for extending this work involves hybrid MPC. Our preliminary
findings suggest that a wider range of hybrid MPC problems could potentially be formulated
using SDP by redefining the decision variables as polynomial constraints. This area, in
particular, warrants deeper investigation to fully understand its potential and limitations.

5. The last lingering issue yet to be resolved pertains to the projection of the SDP solution
back into the original feasible sets. Despite obtaining a rank-1 certificate and subsequently
projecting it onto the unrelaxed problem’s original feasible set, the solution remains nu-
merically infeasible, even when employing SVD. This might explain why SDP struggles to
tackle more complex tasks, as we observed in our experiments, such as finger gaiting.
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