
Proceedings of Machine Learning Research vol vvv:1–14, 2024

LaDyBot: Learning Language-Guided Collaborative Dynamics

Xihang Yu XIHANGYU@UMICH.EDU
College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA

Elizabeth A. Olson LIZOLSON@UMICH.EDU
Robotics Department, University of Michigan, Ann Arbor, MI, USA

Odest Chadwicke Jenkins OCJ@UMICH.EDU

Robotics Department, University of Michigan, Ann Arbor, MI, USA

Abstract
In order to successfully execute manipulation tasks under human guidance, robotic agents need

to interpret language-directed commands. Understanding these instructions provides robots with
crucial semantic insights that enhance their ability to comprehend scenes. This paper concentrates
on the specific challenge of manipulating objects in motion, guided by verbal instructions. While
this task poses significant challenges for robotic systems, it is relatively straightforward for humans.
Our innate ability to rapidly discern and categorize various motion patterns enables us to adapt
our movements accordingly. The integration of language instructions into the understanding of
dynamic environments remains largely unexplored. This paper delves into this issue through two
distinct case studies. Our first case study centers on a table-top manipulation task involving moving
objects in an industrial context, such as executing commands like "Grasp the objects that are pushed
linearly" Here, language instructions are utilized not only to pinpoint the targeted object but also
to enhance the prediction of its future positions. By developing a feedback controller and a motion
planner that leverages these predicted poses, we have achieved an almost perfect success rate in
simulations. The significance of human-robot interaction is also underscored in our studies. An
illustrative example is a scenario where a human requests a service robot to "Toast our wine glasses"
This interaction highlights the importance of understanding and responding to human language
cues in the development of assistive robotic technologies. In our second task, we shift our focus to
recognizing hand actions and predicting hand poses guided by language instructions, as explored
in Garcia-Hernando et al. (2018). This approach enhances outcomes compared to methods that do
not incorporate language guidance. Across both tasks, we investigate a solution involving open-
vocabulary language instructions. We introduce the concept of an "instruction bag"—a collection
of diverse instructions tailored to describe a specific task accurately. Our findings demonstrate that
the application of this instruction bag significantly boosts performance.
Keywords: language-guided manipulation, learning dynamic, feedback control

1. Introduction

Human-robot collaboration hinges on the robot’s ability to perceive and understand language. By
processing language instructions, robots gain two key advantages: firstly, they can focus more ef-
fectively on specific targets and objects; secondly, they acquire additional semantic insights that
enhance scene comprehension, including understanding the motion models of objects and their in-
terrelationships. Conversely, in the realms of human-robot interaction and collaboration, grasping
the dynamics of human movement and object manipulation is crucial. This is because dynamic
behavior is a common aspect of the real world. Humans have honed their skills to adapt to dynamic

© 2024 X. Yu, E.A. Olson & O.C. Jenkins.

SHORT TITLE

“Raise our glasses for celebration!”

“How can my experience
of toasting inform the

execution of this task?”

Figure 1: A figure illustrating toast wine task via language command.

environments in various scenarios, ranging from catching a volleyball to chasing rabbits, or from
handing over objects to throwing them. However, previous research in language-guided manipu-
lation has predominantly focused on static environments. Recognizing this gap, our work aims to
extend these principles to dynamic settings, where objects are in dynamic motion.

This leads us to pose a critical question: Is it possible to develop a system capable of inter-
preting random human-like language instructions, with the dual aims of (i) learning the dynamics
of humans and objects, and (ii) predicting their future dynamics? In our research, we explore the
integration of language into the learning of sequential and dynamic information. This is achieved
by employing a pretrained language model, where language acts as a means to encapsulate complex
dynamic phenomena. Our project introduces an object-centric framework. It leverages language
descriptions of tasks and the state information of objects to predict the future dynamics of the ob-
jects in question. This approach represents a significant step forward in the realm of human-robot
interaction, emphasizing the power of language in enhancing robotic comprehension and predictive
capabilities.
Contributions. Our contributions are two folds:

• A language-guided machine learning system capable of classifying various types of motion
and accurately predicting future dynamics.

• We have conducted extensive experimental validation, utilizing both simulated moving ob-
jects and a real-world hand-action dataset, to demonstrate the efficacy of our approach.

Paper organization. This paper is structured in the following manner: Section 2 provides an
overview of the relevant literature. The problem formulation is presented in Section 3. Detailed
discussions on the algorithm’s realization and implementation are found in Section 4, which is
followed by an in-depth analysis of our experiments in Section 5 and 6. Conclusion will be presented
in Section 7.

2. Related Works

2.1. Language-Conditional Manipulation

Language-conditioned manipulation is a widely studied area. Existing vision language manipula-
tion (VLM) algorithms Shridhar et al. (2021, 2022); Zheng et al. (2022); Liu et al. (2022b,a); Jiang
et al. (2023); Driess et al. (2023); Lynch et al. (2023) have demonstrated impressive performance on

2

SHORT TITLE

object manipulation tasks. While CLIPort proposed by Shridhar et al. (2021) only deals with 3 DoF
desktop object rearrangement tasks, it has been extended to work with 6-DoF manipulation Zheng
et al. (2022). Additionally, StructFormer proposed in Liu et al. (2022b) uses object-centric model
in object rearrangement (i.e. directly predicting the relative pose of objects) and has good results
on the specific shape formation tasks. StructDiffusion Liu et al. (2022a) improves the performance
of StructFormer by incorporating a diffusion model in the pipeline. However, StructFormer and
StructDiffusion only focus on object rearrangements. In addition, Liu et al. (2022b) and Liu et al.
(2022a) use pre-segmented point clouds which are often not accessible for robotics applications.
More recently, Perceiver-Actor proposed by Shridhar et al. (2022), has achieved record-breaking
performance in general language-conditional tasks. Jiang et al. (2023) focuses on a multi-modality
input mixed language with image prompts. Driess et al. (2023) deals with manipulation and navi-
gation tasks by outputting end-to-end action. Lynch et al. (2023) also deals with manipulation, with
emphasis on language feedback. All of these works solving language-conditional tasks are limited
to static environments. Lynch et al. (2023) contains task to move objects but does not learn the dy-
namic patterns of objects explicitly. Our work will generalize language-based inference to dynamic
grasping tasks.

2.2. Dynamic Manipulation

In the field of dynamic manipulation, Zeng et al. (2020) learns residual velocity to compensate the
uncertainty of a physics-based controller (a known dynamic model like gravitational field). Eisner
et al. (2022) predicts a predefined vector flow for articulation objects from vision and selects the
grasp point based on the vector flow of highest magnitude. To grasp moving objects, a closed-loop
visual feedback controller for dynamic environment was implemented in Morrison et al. (2020).
After the best grasp pose has been predicted, a velocity command is computed to make the gripper
reach the target pose. Song et al. (2020) also formulates dynamic grasp as a closed-loop policy
generation problem. In contrast to Morrison et al. (2020), Song et al. (2020) formulates action
policy generation as a Markov Decision Process. An object-centric approach by Akinola et al.
(2021) uses RNN to predict future object pose sequence from a sequence of instantaneous poses.
Wu et al. (2022) formulates the dynamic problem as a "move-and-grasp" game and uses adversarial
reinforcement learning to train the grasping policy and object moving strategies jointly. Most recent
work Jia et al. (2023b) deals with dynamic grasping in obstacle-cluttered environment by merging
look ahead time and time budget into the framework. However, all existing methods do not include
language inferences in the training process.

3. Representation and Algorithm

3.1. Representation

Our research addresses the challenge of classifying object dynamics into predefined action classes,
denoted as C. Consider, for instance, a table-top scenario where object dynamics include linear and
circular motions. In the context of hand actions, "high five" and "toast wines" represent two distinct
action classes. We define the space of poses as P . For the table-top object manipulation task, the
pose space is represented as P = R1×3, reflecting the fact that we are considering single rigid
bodies. In contrast, for the hand action prediction task, the pose space is denoted as P = R21×3,
corresponding to the 3D locations of the 21 joints in a hand model.

3

SHORT TITLE

Pose
Estimation

LaDyNet
Dynamic

Agreement

“Pick the objects that
are pushed linearly”

instruction bag

Position-based
Feedback Controller

Low-level
Controller

Language
Encoder

“Pick the objects that are
spinning circularly”

objects

tim
e

ho
riz

on

Look-ahead Time

!! !"
"!

"#

!! !" !#

LaDyBot Framework

Figure 2: We introduce the LaDyBot framework, specifically tailored for table-top grasping tasks,
which uniquely integrates language embeddings. The framework operates by concatenat-
ing the poses of all objects o1, . . . , oN within a time window of size W , ranging from tk
to tk−W+1. This is combined with the look-ahead time tk+L−tk and language instruction
l. LaDyNet processes these inputs and identifies the target object whose dynamics align
with the given language description, also predicting the pose of this object at the future
time tk+L. Subsequently, a position-feedback controller determines the next position for
the end effector, as well as a new look-ahead time L. Finally, a low-level controller is re-
sponsible for ensuring the precise convergence of the end effector to the desired position.

3.2. Algorithm

Figure 2 provides an illustrative overview of our algorithm. Consider a video sequence of T frames,
each frame featuring N objects. Associated with each object oi is a language instruction li, where
i ∈ {1, . . . , N}, describing its dynamics. This instruction li comprises a set of word tokens
w1, . . . , wmi , with mi representing the number of tokens in li, elucidating the dynamics of the
specified object in the frame. The frames undergo preprocessing to extract the poses pi,k for each
object oi across the frames tk, k ∈ {1, . . . , T}. At any given frame tk, our focus is on a window
of W preceding frames, spanning from tk−W+1 to tk. Given the poses pi,k−W+1, . . . , pi,k for all
objects {o1, . . . , oN} and a lookahead frame L from the current frame, our objectives are twofold:
(1) to classify the dynamics ci ∈ C for each object oi, and (2) to predict the future pose pi,k+L

of object oi at time tk+L. In the experiments section, we incorporate the language instructions
li, i ∈ {1, . . . , N} into our inputs. Let Pi,k,W denote the set {pi,k−W+1, . . . , pi,k} for each object.
Specifically:

c1, ..., cN = Fc (P1,k,W , ..., PN,k,W , L|l1, ..., lN) ,∀i (1)

p1,k+L, ..., pN,k+L = Fp (P1,k,W , ..., PN,k,W , L|l1, ..., lN) ,∀i (2)

4

SHORT TITLE

where Fc and Fp are dynamics classification and pose prediction networks respevtively.

4. Implementation

This section is structured for ease of understanding as follows: The design of the network is detailed
in Section 4.1. This is followed by an exposition of the proposed instruction bag in Section 4.2.
Lastly, the intricacies of the feedback controller are presented in Section 4.3.

4.1. Network Design

Our focus is on determining the action class of an object and its future pose, denoted as plookahead,
based on the previous poses of several objects within a given time window and a language instruc-
tion. The LaDyNet network, designed for this task, comprises a fully connected architecture with
two hidden layers, each consisting of 256 units. The final hidden layer connects to two separate
output layers, dedicated to dynamics prediction and pose estimation, respectively. The effectiveness
of this network is evaluated through a specially designed loss function. This function is a weighted
combination of Mean Squared Error (MSE) for pose estimation accuracy and Cross Entropy (CE)
for object prediction reliability:

LMSE = 1
B

∑B
q=1(Ŷpose,q − Ypose,q)

2 (3)

LCE = 1
B

∑B
q=1

∑|C|
j=1 Yselect,q,j log(Ŷselect,q,j) (4)

L = λLMSE + LCE (5)

where B is the batch size, |C| is the number of classes, λ is a weight parameter, Ypose,q is the ground
truth pose for the q-th sample in the batch, Ŷpose,q is the estimated pose for the q-th sample in the
batch, Yselect,q,j is the ground truth label for the j-th class of the q-th sample in the batch, Ŷselect,q,j
is the predicted probability for the j-th class of the q-th sample in the batch.

4.2. Instruction Bag

Drawing inspiration from the ’bag of words’ concept in Natural Language Processing, we intro-
duce the concept of an ’instruction bag.’ Initially, each canonical instruction is processed through
ChatGPT to generate nl semantically similar instructions. These nl instructions are then divided
into two parts. The first n1 sentences, along with the canonical instruction, form the instruction
bag. During training, we randomly select from this instruction bag for each data point, resulting
in n1 + 1 pairs of linear and circular instructions in the training instruction bag. The remaining
n2 = nl − n1 sentences are used to create the testing dataset, referred to as noncanonical instruc-
tions. For instance, in the table-top grasping task, the phrase dataset is detailed in Table 1. Here,
two motion primitives—linear and circular—are each represented by a canonical instruction: ’Pick
the objects that are pushed linearly’ and ’Pick the objects that are spinning circularly’, respectively.
These instructions are input into ChatGPT, yielding 13 sentences for each. Ultimately, this process
provides us with 10 sentences for the training dataset and 4 for the testing dataset for each motion
primitive.

5

SHORT TITLE

Circular Linear
training dataset

Pick the objects that are spinning circularly Pick the objects that are pushed linearly

Grab objects swirling in a perfect circle Grab objects zooming in a straight line

Grab items that are twirling in a loop Grab objects that are sliding in a straight path

Identify objects that are orbiting in a curve Identify objects that are sliding straight ahead

Select objects that are whirling in a circular route Select objects that are darting in a straight line

Choose items tracing a roundabout trajectory Choose items zipping along a ruler-straight path

Snag objects whizzing in a round motion Snag objects that are being thrust in a linear direction

Go for the things that are looping round and round Go for the things that are moving dead straight

Pick the items that are spinning like a top Pick items that are just shooting straight ahead

Snatch up anything that’s moving in a circle Snatch up anything that’s cruising in a straight path

test dataset
Identify objects moving in loops Identify objects that are proceeding directly forward

Choose objects that are engaged in a rotating motion Choose objects that are progressing in a straight path

Select objects that are pushed in a circular motion Select objects that are pushed along a linear trajectory

Determine objects displaying a rotational motion Determine objects displaying a straightforward motion

Table 1: Comparison of phrases used in training and test datasets for Circular and Linear motion.

4.3. Feedback Controller

Utilizing the previously described network, we classify object actions and predict future poses in
conjunction with language instructions. However, robotic tasks often require coordination with
dynamically moving target objects. For instance, a robot may need to grasp a moving object, high-
five a moving human hand, or toast with a moving wine glass. To address these dynamic scenarios,
we propose a coordination controller that enables the robot to effectively converge with the target
objects. This is implemented through a position-based feedback controller, designed to operate at
frame tk with a specified number of look-ahead frames L. The controller functions as follows:

tk+L = α∥pee,k − pd,k∥+tk (6)

pee,k+1 = pee,k +min
(
1, β

tk+L−tk

)
· (pd,k+L − pee,k). (7)

where pee,k represents the pose of the end effector at frame k, and pd,k is the predicted pose of the
target object at frame k, where d ∈ {1, . . . , N} denotes the target object. Our controller calculates
a look-ahead time tk+L based on the current positions of the object, pd,k, and the end effector, pee,k,
with α as a key hyperparameter. The underlying principle of this approach is that a greater distance
between the end effector and the object necessitates a longer look-ahead time, ensuring sufficient
time for the end effector to converge with the object. The second equation in our model operates
under the premise that both the end effector and the object should move towards the predicted
look-ahead position pd,k+L, as forecasted by Fp, the output of the LaDyNet pose prediction model.
Meanwhile, Fc functions implicitly within the pipeline, classifying the dynamics of all objects
before predicting the specific target object d ∈ {1, . . . , N}. This controller is applied iteratively
across all time frames ti, i = 1, . . . , T .

6

SHORT TITLE

5. Tabletop Grasping Simulation

5.1. Setup

5.1.1. DATASET GENERATION

In our study, we have established a dynamic grasping environment within the PyBullet simulator.
This setup features a UR5 robotic arm equipped with a Suction end effector. The objects intended
for manipulation are positioned on a continuously moving conveyor belt. To simulate various ob-
ject behaviors, we have devised two principal categories of trajectories: linear and circular. These
trajectories can be efficiently randomized by adjusting a specific set of parameters. The following
section provides a detailed description of how we simulate these object trajectories:

• Line. Firstly we sample a starting pose and direction in the manipulation space. Then ran-
dom sample velocities from U(0.3, 0.4). To create more balanced training dataset, we use
stractified sampling strategy for velocities. Stractified sampling strategy is that we divide the
velocity range into ns equally subranges. When sampling, first sample a subrange and then
uniformly sample velocity in the subrange. In the experiment, we set ns = 10.

• Circle. Firstly we sample a circle center in the manipulation space. Then random sample
radius from U(0.01, 0.05) and angular velocity from U(10, 11). For angular velocities, we
use stractified sampling. Fianlly, the direction of circular motion will be sampled, either
moving clock-wise or counter clock-wise.

In each episode of dynamic grasping, we generate 3 distinct trajectories for 3 pudding boxes,
sourced from the YCB dataset Calli et al. (2017). Our dataset comprises 60 linear and 60 circu-
lar episodes, with each episode capturing 400 poses. The time interval between consecutive poses
is set at 1

240 seconds. We adhere to a train/test split of 4/1. For data processing, every set of 50
consecutive poses is grouped as a single data point. Notably, all poses are relative to their preceding
pose, a strategy that enhances the pose predictor’s ability to generalize across different trajectory
locations. This training methodology aligns with the approach used in Jia et al. (2023a). Each data
point in our study is a composite of a 50-pose moving window serving as the pose input, paired with
a future timestamp designated as the look-ahead time.

5.1.2. TRAINING PROFILE

Throughout the training process, we randomly select a language instruction from the instruction
bag for each data point. The language instruction, denoted as l, is preprocessed using the RoBERTa
pretrained language model, serving as our language encoder. We employ only the last hidden layer
from RoBERTa’s sequential output, as it fully encapsulates sentence-level information. The input
of our network is concatenated inputs of object poses, language instructions, and look-ahead time.
The output of the network includes both the predicted object of interest and the pose of this object
at the look-ahead time, relative to the current timeframe. Our network operates with a batch size
of 512 and utilizes the Adam optimizer, set to a learning rate of 0.0001. The training extends over
200 epochs, with the loss function assigned a weight of λ = 50.0. It’s important to note that we
currently do not employ a pose estimator for object poses. Instead, we use ground truth poses and
introduce Gaussian noise, wp ∼ N(0, 0.01), to each 3D pose to simulate estimated poses. This
approach aims to mirror real-world conditions more closely. As part of our future plans, we intend
to integrate vision-based pose estimation into our pipeline for a more comprehensive and effective
system.

7

SHORT TITLE

Step 52 Step 62 Step 72 Step 92

Scene

Object
Confidence

Figure 3: This illustration depicts a typical sequence within a grasping task, where the objective is
to pick up an object that is being pushed linearly. The sequence showcases scenes at steps
52, 62, 72, and the final step. Within these scenes, there are three objects present, but only
one is selected as the target, highlighted in red in the second row of images. In the first
row, the future positions of the chosen object are indicated by white balls. As the sequence
progresses, these white balls gradually align more closely with the target object. This
alignment culminates in step 92, where the end effector successfully grasps the target. In
the second row, the confidence levels in object prediction are visualized through a heat
map. Notably, the target object (marked in red) consistently exhibits significantly higher
confidence scores compared to the other objects, often nearing a probability of 1. This
clear distinction in confidence levels underlines the effectiveness of our prediction model
in accurately identifying and tracking the target object throughout the task.

5.2. Baseline

Given the novelty of learning language-guided dynamics, we established our own baseline for com-
parison. In this baseline model, the network is trained without utilizing the instruction bag for sam-
pling. To ensure a fair comparison, we maintained consistency in the training profile and dataset.
The sole distinction lies in the use of canonical instructions throughout the training. These instruc-
tions are "Pick the objects that are pushed linearly" and "Pick the objects that are spinning circu-
larly." For this baseline training, the network follows the same parameters as our primary model,
operating with a batch size of 512, across 200 epochs, and employing a loss weight of λ = 50.0.

5.3. Performance Analysis

5.3.1. LADYBOT

The object prediction success rate and pose prediction error in Test dataset are shown in Table 2.
Pose Prediction Error e is defined as:

e = 1
D

∑D
q=1∥Ŷpose,q − Ypose,q∥ (8)

where D is the number of data points in testing dataset and Ypose,q and Ŷpose,q are ground truth
pose and estimated pose respetively. The first column shows that canonical instructions are used in

8

SHORT TITLE

Table 2: LaDyBot trained with instruction bag. Object Prediction Success Rate ↑/ Pose Prediction
Error (m) ↓.

Canonical Instruction NI 1 NI 2 NI 3 NI 4
Linear 0.9583/0.0429 0.9578/0.0453 0.9351/0.0501 0.9221/0.0541 0.9065/0.0607

Circular 0.9659/0.0386 0.4565/0.0953 0.9336/0.0475 0.3804/0.1040 0.2122/0.1155

Table 3: LaDyBot trained with instruction bag. Grasping Success Rate ↑ / Wrong Pick Rate ↓ / Fail
Pick Rate ↓. GT poses: Ground truth poses. LB: LaDyBot. NI i: Noncanonical instruction
i.

GT poses LB LB+Low Noise LB+High Noise
Linear 1.0/0.0/0.0 0.9/0.0/0.1 0.9/0.1/0.0 0.9/0.1/0.0

Circular 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0

LB+NI1 LB+NI2 LB+NI3 LB+NI4
Linear 1.0/0.0/0.0 0.9/0.0/0.1 1.0/0.0/0.0 1.0/0.0/0.0

Circular 0.9/0.1/0.0 1.0/0.0/0.0 0.5/0.3/0.2 0.3/0.7/0.0

testing. The other four columns show the results if using four noncanonical instrustions in testing.
The order number of noncanonical instructions is the same as top-down order in Table 1. Except for
three noncanonical instructions for circular motion, all others achieved close to 1 object prediction
success rate while average pose prediction error remains around 5 cm. In simulation, we run 10
unseen linear sequences and 10 unseen circular sequences in PyBullet simulator. Table 3 shows
the simulation results. For GT poses experiments, we know the target object and ground truth
pd,k+L at any specific time tk with look ahead time tk+L. We can see that GT poses achieve 100%
success rates for both linear and circular sequences. This suggests that our position-based feedback
controller works quite well given that estimated pd,k+L is accurate. Low Noise means Gaussian
Noise N(0, 0.001m) is added to 3D poses. High Noise means Gaussian Noise N(0, 0.01m) is
added to 3D poses. Wrong Pick refers successful grasping but wrong pick of a distracted object.
Fail Pick refers to fail to pick any objects due to inaccurate future pose estimation. All sequences
achieved 1.0 or close to 1.0 grasping success rate including high noise sequences except for two
noncanonical instructions case for circular motion. Note that the failure of the two noncanonical
circular instructions is mainly due to false selection as shown in Table 2 which suggests that the
unseen language instruction is the main reason for defeats. A typical sequence of using LaDyBot is
shown in Fig. 3.

5.3.2. NO INSTRUCTION BAG

We perform an ablation study on instruction bag to study how the performance of language gener-
alization changes. In Table 4, the object prediction success rate and pose prediction error in Test
dataset are shown. We can see that the use of instruction bag improves prediction success rate for
noncanonical instructions while reducing the pose prediction errors by a large margin. Only ex-
ceptions are circular motion for NI 1 and NI 4. The simulation results exhibit similar trend which
are shown in Table 5. We can see that using instruction bag improves the grasping success rates for
almost all instructions while the use of instruction bad does not affect the success rate for noisy pose
estimation. Within the failure grasping cases, both wrong selection and wrong pose estimation lead
to the failure, which may differ across different instructions. In summary, the use of instruction bag
improves the robustness of the whole system.

9

SHORT TITLE

Table 4: LaDyBot trained without instruction bag. Object Prediction Success Rate ↑/ Pose Predic-
tion Error (m) ↓.

Canonical Instruction NI 1 NI 2 NI 3 NI 4
Linear 0.9628/0.0422 0.5152/0.1437 0.5486/0.1345 0.8049/0.0871 0.8384/0.0842

Circular 0.9624/0.0375 0.4757/0.0847 0.9161/0.0488 0.2370/0.1190 0.4470/0.0967

Table 5: LaDyBot trained without instruction bag. Grasping Success Rate ↑ / Wrong Pick Rate ↓
/ Fail Pick Rate ↓. GT poses: Ground truth poses. LB: LaDyBot. NI i: Noncanonical
instruction i.

LB LB+Low Noise LB+High Noise
Linear 0.9/0.1/0.0 1.0/0.0/0.0 0.8/0.0/0.2

Circular 0.9/0.0/0.1 1.0/0.0/0.0 0.9/0.0/0.1

LB+NI1 LB+NI2 LB+NI3 LB+NI4
Linear 0.3/0.4/0.3 0.2/0.8/0.0 0.7/0.0/0.3 0.6/0.3/0.1

Circular 0.1/0.3/0.6 1.0/0.0/0.0 0.0/0.6/0.4 0.2/0.4/0.4

6. Hand Action Experiments

In our second task, we shift focus to language-guided hand action recognition and hand pose pre-
diction. For effective human-robot collaboration, it’s crucial for a robot to understand both current
human actions and anticipate future intentions. This makes hand action recognition and hand pose
prediction vital components of human-robot interaction. Our subsequent experiments leverage the
F-PHAB hand action dataset Garcia-Hernando et al. (2018). This dataset includes 1,175 action
videos across 45 different action categories, contributed by 6 subjects. Each video sequence is la-
beled with its corresponding action, and every frame within these sequences is annotated with hand
pose information. These annotations were obtained using a motion capture system that automat-
ically determines the 3D world frame locations of each of the 21 joints in a hand model. This is
achieved through the use of 6 magnetic sensors and inverse kinematics. The next section details
our framework’s approach to hand action recognition and 63D hand pose prediction, considering a
specified look-ahead time.

6.1. Setup

In this experiment, our goal is to determine the hand dynamics classification ci ∈ C for each hand
sequence i and predict the future hand pose p ∈ P at a specified look-ahead time t. We focus on
classifying ’high five’ and ’toast wine’ actions, while also predicting the hand pose at a future mo-
ment within these sequences. This experiment utilizes the first-person hand pose dataset referenced
in Garcia-Hernando et al. (2018), which provides annotations for previous poses. In real-world set-
tings, magnetic sensors and inverse-kinematics can be used to capture hand pose data. Regarding
language instructions, 9 variants were generated by ChatGPT based on canonical instructions like
"Raise our glasses in celebration" for toasting wine, and "Slap me a high five" for high fives. We
compiled an instruction bag with 7 sentences, combining 6 prompted instructions with one canoni-
cal instruction for each action. The training instructions are detailed in Table 6, and 3 noncanonical
instructions are reserved for testing.

The network architecture mirrors that of the previous section, though the input dimension dif-
fers due to the complex nature of hand poses. Inputs to the network include a window of past hand

10

SHORT TITLE

High Five Toast Wine
training dataset

Slap me a high five Let’s clink our glasses

Let’s do a high five Raise your glass for a cheer

Hit me with a high five Time to celebrate with a drink

Up for a high five Join me in a drink toast

High five me! Let’s celebrate with a glass raise

Let’s slap a five Raise our glasses in celebration

Give me a friendly high five Here’s to a wonderful moment

test dataset
High five for the good times Cheers to good times

Let’s smack those hands high Toast to our gathering

High five for our success Celebrate this moment with a toast

Table 6: Comparison of phrases used in training and test datasets for High Five and Toast Wine
actions.

Table 7: LaDyBot trained with and without instruction bag in the first table. LaDyBot trained with-
out using language in the second table. Action recognition success rate ↑ / Pose Prediction
Error (m) ↓.

Canonical Instruction Noncanonical Instruction
w instruction bag 1.0000/0.4437 0.9609/0.4660

w/o instruction bag 1.0000/0.4446 0.7204/0.5775

not using language 0.9476/0.4403

poses p over 2
3 seconds, a look-ahead time t, and a language instruction l. The language instruction

is processed using a pretrained RoBERTa model. Our training utilizes PyTorch with the Adam op-
timizer. We adopt a leave-one-out protocol for the dataset comprising 6 subjects, training on five
and reserving one for testing. This approach ensures network adaptability to unseen subjects. The
choice of ’high five’ and ’toast wine’ actions is twofold: they are commonplace in social interac-
tions, and they necessitate the robot’s ability to interpret human language and predict hand poses
during interaction. The training parameters are set as follows: loss weight λ = 20.0, learning rate
0.00001, batch size 512, and the network is trained over 100 epochs.

6.2. Performance Analysis

6.2.1. LADYBOT

The outcomes of our experiments are presented in Table 7, with the pose prediction error defined as
per Equation 8. The results indicate a remarkable achievement in the classification task, boasting
a 100% success rate. Even when utilizing noncanonical instructions, the classification success rate
remains impressively high at 96%. In terms of pose estimation, we observed an average error of
approximately 0.44m per joint when using canonical instructions, and a slight increase to 0.46m
with noncanonical instructions. A representative sequence of hand action prediction is visually
detailed in Fig. 4.

11

SHORT TITLE

Current Frame:
Frame 19

Frame 20 Frame 40 Frame 50

Ground
Truth

Estimate

Frame 30

Reference
Image

Figure 4: Illustration of Hand Action Prediction. Language instruction and hand poses from frame
0 to frame 19 are input into the system. LaDyBot classifies the hand action as "toast
wine" and predict the hand poses in the future frame 20, 30, 40, 50 respectively.

6.2.2. ABLATION STUDY

This section delves into an ablation study focusing on the use of the instruction bag. A comparative
analysis of the performance with and without the instruction bag is detailed in Table 7. Notably, the
incorporation of the instruction bag results in enhanced pose estimation for canonical instructions
and a significant improvement in both the classification success rate and pose estimation accuracy
for noncanonical instructions. Furthermore, we conducted an ablation study on the role of language
in the process. In this variant, the network’s inputs were limited to poses and the look-ahead time,
excluding language instructions. The outcomes of this modification are also presented in Table 7.
While there was a marginal decrease in pose estimation error—dropping to 0.4403 from 0.4437
for canonical instructions and to 0.4660 for noncanonical instructions—compared to the LaDyBot
using the instruction bag, a notable impact was observed in hand action classification. The success
rate for this task was lower than that achieved by LaDyBot, even with noncanonical instructions
(0.9609 vs. 0.9476). These results underscore the significant role that language instructions play in
enhancing the understanding of hand actions.

7. Conclusion

This paper showcases the profound effect of embedding language commands into robotic systems
for dynamic environments. Our exploration, encompassing tabletop manipulation and hand action
recognition, leverages an ’instruction bag’ strategy, yielding marked enhancements in both robotic
efficacy and environmental comprehension. These advances underscore the vital importance of lan-
guage in elevating human-robot interaction, setting the stage for robots that are more adaptive and
intuitively responsive. Looking ahead, our future endeavors will focus on experimenting with vari-
ous sequential transformer-based networks and extending our research into real-world applications.

12

SHORT TITLE

Acknowledgments

I extend my heartfelt thanks to Liz and Chad for their exceptional guidance and mentorship. I am
also grateful to Boyang for the insightful discussions regarding machine learning algorithms.

References

Iretiayo Akinola, Jingxi Xu, Shuran Song, and Peter K Allen. Dynamic grasping with reachability
and motion awareness. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 9422–9429. IEEE, 2021.

Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M Dollar. Yale-cmu-berkeley dataset for robotic manipulation research. The
International Journal of Robotics Research, 36(3):261–268, 2017.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Ben Eisner, Harry Zhang, and David Held. Flowbot3d: Learning 3d articulation flow to manipulate
articulated objects. arXiv preprint arXiv:2205.04382, 2022.

Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. First-person hand
action benchmark with rgb-d videos and 3d hand pose annotations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 409–419, 2018.

Yinsen Jia, Jingxi Xu, Dinesh Jayaraman, and Shuran Song. Learning a meta-controller for dynamic
grasping. arXiv preprint arXiv:2302.08463, 2023a.

Yinsen Jia, Jingxi Xu, Dinesh Jayaraman, and Shuran Song. Learning a meta-controller for dynamic
grasping. 2023b.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with multimodal
prompts. 2023.

Weiyu Liu, Tucker Hermans, Sonia Chernova, and Chris Paxton. Structdiffusion: Object-centric
diffusion for semantic rearrangement of novel objects. arXiv preprint arXiv:2211.04604, 2022a.

Weiyu Liu, Chris Paxton, Tucker Hermans, and Dieter Fox. Structformer: Learning spatial structure
for language-guided semantic rearrangement of novel objects. In 2022 International Conference
on Robotics and Automation (ICRA), pages 6322–6329. IEEE, 2022b.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Douglas Morrison, Peter Corke, and Jürgen Leitner. Learning robust, real-time, reactive robotic
grasping. The International journal of robotics research, 39(2-3):183–201, 2020.

13

SHORT TITLE

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the wild: Learning
6dof closed-loop grasping from low-cost demonstrations. IEEE Robotics and Automation Letters,
5(3):4978–4985, 2020.

Tianhao Wu, Fangwei Zhong, Yiran Geng, Hongchen Wang, Yongjian Zhu, Yizhou Wang, and
Hao Dong. Grasparl: Dynamic grasping via adversarial reinforcement learning. arXiv preprint
arXiv:2203.02119, 2022.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics, 36(4):
1307–1319, 2020.

Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, and Xin Eric Wang. Vlmbench: A com-
positional benchmark for vision-and-language manipulation. arXiv preprint arXiv:2206.08522,
2022.

14

	Introduction
	Related Works
	Language-Conditional Manipulation
	Dynamic Manipulation

	Representation and Algorithm
	Representation
	Algorithm

	Implementation
	Network Design
	Instruction Bag
	Feedback Controller

	Tabletop Grasping Simulation
	Setup
	Dataset Generation
	Training Profile

	Baseline
	Performance Analysis
	LaDyBot
	No instruction bag

	Hand Action Experiments
	Setup
	Performance Analysis
	LaDyBot
	Ablation Study

	Conclusion

