[s Large Language Model All You Need for 3D Scene
Understanding

Weihan Xu, Ruoyu Wang, Xihang Yu
April 19, 2023

Abstract

Robotic applications rely on scene understanding to analyze objects within a 3D environ-
ment. One crucial component of scene understanding is semantics labeling, which involves
assigning class labels to semantic regions based on the objects within them. A visualization
of the semantics labeling process is shown in Figure 1. In a recent study [2], Large Language
Models (LLMs) were found to be effective in incorporating common sense knowledge during
the labeling process. In this project, we aim to compare two LLMs, GPT-J and RoBERTa,
using fine-tuned feed-forward and contrastive networks, which were not evaluated in [2], for
the semantic labeling task. The contributions of this project are twofold: (i) The proposed
GPT-J with fine-tuned feed-forward network achieves state-of-the-art(SOTA) performance, and
(ii) by varying the number of candidate objects, adopting ChatGPT-based room detection and
fine-tuning a whole BERT-based network, we explore the possible performance bottleneck of
our proposed GPT-J pretrained network. Open-source software is available for download at
https://github.com/XihangYU630/llm scene understanding gpt;.

1 Problem Description

The understanding of semantic scenes is becoming increasingly important for robotics, particu-
larly with regards to places classification within 3D scenes. Although existing algorithms such as
Kimera[7] and Hydra [6] have produced positive results in 3D scene reconstruction, the nodes gen-
erated by these algorithms are unlabeled, i.e. whether a particular space is a bedroom or a kitchen
remains unknown. These labels are essential for subsequent reasoning and planning tasks, as the
robot needs to understand, for example, the meaning of an instruction that "Go to the kitchen and
cook the egg" and match "kitchen" in the sentence with the place in the reconstructed map produced
by Simultaneous localization and mapping algorithm (SLAM).

Previous work [2] in scene labeling, as far as we know, first utilized natural language tools for
classifying rooms. In this paper, we use large language models like BERT and RoBERTa to produce
high-dimensional sentence embeddings and compare the results of GPT-J with the methods proposed
in the original paper. Our study achieves state-of-the-art performance of 67.20% accuracy on the test
dataset by using GPT-J and a feed-forward network. However, since a real-world robot perception
system should expect higher accuracy, we aim to explore possible performance bottlenecks in our
proposed GPT-J pretrained network. To this end, we vary the number of candidate objects, adopt
ChatGPT-based room detection, and fine-tune a whole BERT-based network. The results indicate
that searching for bottleneck of performance is still an ongoing research and using images is a natural
next step. In a short word, our research project contributes by demonstrating the effectiveness of
GPT-J and exploring possible performance limitations in this context.

https://github.com/XihangYU630/llm_scene_understanding_gptj

[[bathroom] [kitchen] [bedroom]]

Toilet » &)

/

Figure 1: Tlustration of place labeling task. Given low-level information, predict labels (rooms or
buildings).

2 Related Work

2.1 3D Dynamic Scene Graphs

3D Dynamic Scene Graph (DSG) is a layered graph where nodes represent spatial concepts
at different levels of abstraction, and edges represent spatio-temporal relations among nodes. [7]
introduces Kimera, which is the first fully automatic method to build a DSG from visual-inertial
data. Based on Kimera, [6] introduces Hydra, which is the first real-time spatial perception system
that optimizes 3D scene graph in response to loop closure. It is used for 3D Scene Graph Construction
and Optimization.

2.2 Semantic Labeling

[4] uses Bayesian probabilistic framework for determinig room labels and classifies based off the
most common objects in a room. [2], utilizes natural language tools and introduces three paradigms
for leveraging language for classifying rooms in indoor environments based on their contained objects,
including zero-shot approach, a feed-forward classifier approach and a contrastive classifier approach.

2.3 Representation Learning on Graphs

[5] introduces GraphSAGE, which is a general inductive framework that leverages node feature in-
formation to efficiently generate node embeddings for previously unseen data. [9] introuduces Graph
Attention Networks(GATS) is a novel neural network architectures that operates on graph-structured
data, leveraging masked self-attentional layers to address the shortcoming of prior methods based
on graph convolutions or their approximations.

Only select k most
To select the most ’

representative
Measured by information
Entropy
Hoy==) p(i3]or) logn(rjlon “
€L

Non-uniformity of
distribution p(7;]0;)

NN P Proxy co-occurrence p(olo) = explogp(W,,)
eed fask-speciic date Ground-truth probabilities by) = S cupexplogp(Woyr)
“ co-occurrences querying language
models

Figure 2: Ilustration of data preprocessing.

3 Methodology

In this project, we are interested in determining the type of a room based on the objects in the
room. In the remaining part of this section, we will first discuss dataset selection in Sec.3.1 and data
preprocessing in Sec.3.2. Then feed-forward head network with GPT-J in Sec.3.3 and contrastive
learning with GPT-J in Sec.3.4 will be discussed.

3.1 Dataset

We will evaluate the algorithms on scene graphs from Matterport3D dataset [1], which is used
in [2] and other robot indoor navigation tasks. This dataset contains semantic labeled rooms (hence
suitable for room classification task) and objects with mask segmentations and bounding boxes. We
consider mpcat40 (35 object labels) and nyuClass (201 object labels) [8]. In total, there are 81
buildings with 1878 and 1866 rooms (for mpcat40 and nyuClass respectively), each with one of 23
room labels. Note that we only use mpcat40 labels for building classification task since mpcat40 is
less informative and specific in terms of object labels as pointed out in [2]. It is important to take
into consideration that the labeling of rooms in nyuClass and buildings in mpcat40 is biased due to
the nature of Matterport3D. For example, labels such as bedrooms and houses are more common
while labels such as lounges and office complexes are less common. The frequency distribution of the
room labels is approximately shown in Figure 10, while the frequency distribution of the building
labels is approximately shown in the column Total in Dataset of Table 4.

3.2 Data Preprocessing

As pointed out in [2], some of the objects might be shared across different type of rooms like
chair and light, which might bring noise into the model. In order to get the most representative
information, we selected only k most semantically informative objects as in [2]. A semantically
informative object is defined as an object that only appear in only a few room types. This is
measured by non-uniformity of probability p(r;|o;), where o; € L, is the object label, r; € L is the
room label. We measure non-uniformity by entropy:

H, =— Z p(rjloi) log p(rjlo;) (1)

r;€LR

§

e &

=

= =

=

oM b=
"This room contains i)
toilets, sinks, and Y Y
bathtubs." l_/ l_/

.) Fine-Tuned . .
"This room contains Sentence i '
stoves.” | GPTJ = Embeddings Head \))
g Network))

"This room contains ' \I /‘\I
appliances and \ J _ J
counters."

Figure 3: Examples of feed-forward network with GPT-J

If the distribution p(r;]o;) is uniform the entropy is maximized and minimized when it is one-hot.
Thus, we select top-k objects:
Obest = argmink[Hoz‘] (2)
0i
The remaining question is how to proximate distribution of p(r;|o;). Two approaches exist for
computing p(r;j|o;). The first approach involves utilizing ground-truth co-occurrences. It is similar
to how we extract Pointwise Mutual Information from a term-document matrix, which displays the
co-occurrence of a term and a document. In this method, we calculate how frequently each object
label appears in each room type and normalize it across rooms. To avoid requiring task-specific
data, we employ Laplace smoothing.
The second approach entails utilizing language models to estimate the probability of co-occurrence
between a room label and an object label. To achieve this, we can use a language model to anticipate
the likelihood of a sentence containing both the object label and the room label. Specifically, we use

explog p(Wo, ;)
(3)

eon XD 10 p(ry[0)

p(rjloi) ~ 5

where W, .. is the query string "A room containing o; is called a(n) r;." and logp(W,,) is
computed via language model.

As shown in Figure 2, we take the n most informative objects in each room and find all k-object
permutations, producing P query data points per room of the form "This room contains o1, 02, ...

and og.", all of which correspond to the room’s label.

3.3 Feed-forward Network with GPT-J

We investigate the use of large language models to impart common sense for scene understanding.
As shown in Figure 3, we fine-tune a feed-forward network. In particular, the objective is to find
the label giving us the maximum value of the output.

7 = argmaz[fo(A(W))],, (4)
T
W is a query of the form "This room contains o1, 0z, ... and ox." A(WW) takes in a sentence from
query space and outputs to a hidden space. A neural network fp : A(W) — RIal takes in query
embeddings and outputs prediction logits.

Contrastive Approach Embedding Maximum value (per row)

“This room contains toilets,) Q1 CosSimQ1R1) | CosSim(Q1R2) | CosSim(Q1R3)
sinks, and bathtubs”
“This reom contains beds and Language Q2 SmQ2R1) | CosSm(QZR2) | Cossim(Q2R3)
drawers’ Model
"This room contains Q3 CosSim(Q3R1) | CosSim(Q3R1) | CosSim(Q3R2)
appliances and counters" | |
. ‘ R1 ‘ R2 ‘ R3 ‘
“This room is a bathroom” N
*This room is a kitchen” Language Neural
Model Network
“This reom is a bedroom”

Figure 4: Examples of contrastive network with GPT-J

3.4 Contrastive Network with GPT-J

As shown in Figure 4, we fine-tune a contrastive network using the hidden output of GPT-J. The
objective is to find the room label whose embedding has the highest cosine similarity with that of
the query:

= argmaz(ge, (A(W)) - he, (A(W,))] ()

) J
Tj

where W is a query of and string erj is a natural language template in the form of "This room
is a(n) 7;." Vr; € Lg. Note that gg1, he2:A(W) — {60 € RN, |d||2= 1} are two shallow multi-layer
perceptrons neural networks that mapping language embeddings into the same space.

4 Experiments

4.1 Baseline

To establish a basis for comparison, we selected two fundamental algorithms. The first algorithm
we chose was the RoOBERTa pre-trained model equipped with a feed-forward/contrastive head net-
work because it exhibited the best performance among all the methods discussed in [2]. Additionally,
we decided to utilize the zero-shot GPT-J to demonstrate that with a feed-forward/contrastive head
network, GPT-J can effectively learn from data. It’s worth mentioning that the second algorithm
was previously tested in [2].

4.2 Experimental Setup
4.2.1 Pre-trained GPT-J with Head Network

Table illustrates the parameters employed in our experiments with the feed-forward head net-
work (left table) and the contrastive head network (right table). We use 50/20/30 train/valida-
tion/test split in nyuClass for all methods except for zero-shot GPT-J, where only test split is
used to make it comparable with other methods. Table 2 shows the implementation details of the
training process. It is worth noting that we did not utilize a training epoch as high as 200 for the
baseline, as in the original paper, since the training loss stabilized after just 10 epochs (or 20 epochs
for RoBERTa+-contrastive). As for the zero-shot GPT-J baseline, we generated query sentences
using three most informative objects. Additionally, we tested both the ground truth and proxy
co-occurrence probability for all methods, including both our proposed methods and the baselines.
For building trials, we divide the buildings in mpcat40 dataset into a 40/20,/40 train/validation/test
split. Table 3 shows the implementation details of the training process for building detection. We

Linear Linear Output:
512 256 F: Distribution
Input: + + over rooms
LM Batch Batch Linear labels
embedding » Norm » Norm » 256 » 23
1024 + + C: High dim
RelU RelU embedding
256

Figure 5: Head network architecture for RoOBERTa pretrained model: The fine-tuned feed-forward
and contrastive heads use the same architecture, but with different output dimensions (reported
under F: and C: respectively).

Linear Linear Linear Linear Linear E [Ssut:?t:]uttlon
2048 2048 1024 512 256 'over TEES
Input: + + + + + labels
LM Batch Batch Batch Batch Batch Linear
embedding » Norm » Norm » Norm » Norm » Norm » 256 » .23 .
C: High dim
4096 + + + + + beddi
RelU RelU ReLU RelU ReLU e

Figure 6: Head network architecture for GPT-J pretrained model: The fine-tuned feed-forward and
contrastive heads use the same architecture, but with different output dimensions (reported under
F: and C: respectively).

use the same set of parameters as reported in [2] for GPT-J + feedforward network except for re-
duced number of epochs. The different high-level sentence embeddings of the RoBERTa and GPT-J
pretrained models necessitated the use of different network architectures. Specifically, the network
model with the RoBERTa pretrained model used the architecture shown in Figure 5, while the GPT-
J network model used the architecture shown in Figure 6. It should be noted that the contrastive
head network for ROBERTa had a slightly different architecture from the original architecture in [2]
in terms of the number of neurons in certain layers, as we found our model performed better with
this adjustment. However, we kept the same architecture with [2] for the feed-forward network for
RoBERTa.

4.2.2 ChatGPT

In November 2022, OpenAl launched ChatGPT, an AI chatbot that uses the GPT-3.5 and
GPT-4 families of large language models (LLMs) and has been fine-tuned using a combination of
supervised and reinforcement learning methods. ChatGPT has demonstrated high performance in
various tasks. For this study, we selected 217 data points from the test dataset, each containing no
more than three objects for prediction. We used the strategy outlined in Sec.3.2 to select objects
based on their GT co-occurrence probability. After selecting the objects, we constructed a query
sentence in the form of "W = ’This room contains (objects). What is the most likely label for
this room among bar, bathroom, bedroom, classroom, closet, conference room, dining room, family
room, game room, garage, gym, hallway, kitchen, laundry room, library, living room, lobby, lounge,
office, spa, staircase, television room, utility room?’". We then tasked ChatGPT with predicting the
most likely room label given the information about the objects.

4.2.3 BERT fine-tuning

For the BERT fine-tuning experiment on the nyuClass dataset, a train/validation/test split of
40/20/40 is used. To generate queries for each room, the four most significant objects are selected
and Py = 24 different queries are created by generating all possible permutations of these objects.

Linear Linear

liaute 512 256 Output:
Query BERT * * Linear Distribution
. Batch Batch over room
SREAETE e » Norm » Norm » 225 » labels
30
+ + 23
RelLU RelLU

Figure 7: Network architecture for BERT classifier.

The queries are tokenized using BertTokenizer and encoded as a list of integers for input into the
BERT model. To ensure consistency in length, all queries are padded to a length of 30 using max-
padding. The embedded queries are then fed into the BERT classifier model (as shown in Figure 7),
which is fine-tuned for 100 epochs using cross-entropy loss and Adam optimizer with a learning rate
of 0.0001 and weight decay of 0.001. The batch size used is 128, and the fine-tuned model is tested
on the test dataset and compared to the baseline.

4.3 Evaluation

We will be using classification accuracy as the evaluation metric for the experiments involving pre-
trained GPT-J/RoBERTa with fine-tuning head network, zero-shot GPT-J, and fine-tuning BERT.
The accuracy will be calculated using the following formula:

#Successful Room Predictions (©)
#All Room Predictions

For the zero-shot ChatGPT experiment, we will be computing macro/micro averaged preci-
sion/recall/F1. Macro-averaging compute performance for each class and then average. Micro-
averaging collects decisions for all classes and compute contingency table to get the result. The
equations for calculating precision and recall are as follows:

Accuracy =

#True Positive
#True Positive 4+ #False Positive

Precision =

#True Positive

Recall =
cea #True Positive 4+ #False Negative

2 % Precision * Recall
F1-— = 9
seore Precision + Recall 9)

5 Results

By replacing RoBERTa-large with GPT-J and our approach achieves SOTA performance. Quan-
titative results will be presented in Sec.5.1. As described in Sec.5.2, to test the generalizability of
the proposed method, we also test it for building type detection task and achieve better result than
baseline. However, with testing accuracy that is lower than 70% in room detection task, it is not
possible to deploy the room detection algorithm on real world robotics systems. Therefore, poten-
tial bottleneck is explored in the following sections. To explore possible bottleneck of performance,
varying number of most informative candidate objects in Sec.5.3, ChatGPT-based zeroshot room
detection in Sec.5.4 and finetuning BERT network in Sec.5.5 are tested and quantitative results are
presented.

Table 1: Accuracies in room prediction for all approaches. As haven been discussed in Sec.3.2, GT
represents using ground truth to select the informative objects while Proxy queries language model
to proximate co-occurrency probability.

Zero-shot Feed-forward Contrastive
GPT-J(Baseline) RoBERTa(Baseline) GPT-J(Ours) RoBERTa(Baseline) GPT-J(Ours)
GT Proxy GT Proxy GT Proxy GT Proxy GT Proxy
45.52% 25.27% 66.20% 56.94% 67.20 % 57.14% 64.19% 54.73% 62.58% 53.92%

Table 2: Hyperparameters used in room prediction. Left table shows the parameters

forward network.

Right table shows the parameters used in contrastive network.

used in feed-

Hyperparameters | RoBERTa(Baseline) | GPT-J(Ours) Hyperparameters | RoBERTa(Baseline) | GPT-J(Ours)
Loss Function Cross-entropy Cross-entropy Loss Function Cross-entropy Cross-entropy
Optimizer Adam Adam Optimizer Adam Adam
Learning Rate 0.0001 0.0001 Learning Rate 0.00001 0.00001
Weight Decay 0.001 0.001 Weight Decay 0.001 0.001

Step Size 10 10 Step Size 20 20

Gamma 0.5 0.5 Gamma 0.9 0.9

Epochs 10 10 Epochs 20 10

Batch Size 512 512 Batch Size 512 512

5.1 Pre-trained GPT-J with Head Network

As we can see in Table 1, feed-forward/contrastive + RoBERTa/GPT-J are tested. The ac-
curacies on testing dataset are recorded. As shown in the table, methods with GT co-occurency
probability consistently outperform methods with proxy co-occurency probability. This is within our
expectation since, since by using GT probability better, training process better fits into a specific
problem. We achieve SOTA performance by using GPT-J + feed-foward with ground truth object
query at 67.20%. Notice that the baseline here achieves best performance in [2]. In other words, the
result of GPT-J + feed-forward is the best ever record.

5.2 Building Type Classification using GPT-J

With generalizability in mind, we will evaluate the performance of building prediction using fine-
tuning feed-forward and contrastive model with GPT-J or RoBERTa. Given the rooms contained
in a building, the network infers the building containing the rooms. Specifically, it classifies a query
W "This building contains rl, r2, ... and rk." into three classes {house, office complex, spa resort}.
only feed-forward + RoBERTa/GPT-J are tested and results are shown in Table 4. Again, GPT-J
+ feed-forward achieves slightly better results in building classification task.

Table 3: Hyperparameters used in building prediction. Table shows the parameters used in feed-
forward network.

Hyperparameters | RoBERTa(Baseline) | GPT-J(Ours)
Loss Function Cross-entropy Cross-entropy
Optimizer Adam Adam
Learning Rate 0.0001 0.0001
Weight Decay 0.001 0.001

Step Size 20 20

Gamma 0.99 0.99

Epochs 100 10

Batch Size 512 512

Table 4: Accuracies in building prediction for RoBERTa/GPT-J-feed-forward. Note that only feed-
forward networks are compared. As haven been discussed in Sec.3.2, GT represents using ground
truth to select the informative objects while Proxy queries language model to proximate co-occurency
probability.

Building labels RoBERTa(Baseline) GPT-J(Ours) Total in Dataset

House 27 26 27
Office Complex 1 2 2
Spa Resort 0 1 4
Total 28(84.85%) 29(87.88%) 33
Test Accuracy Test Accuracy
10 10
N RoBERTa_useGT_True W RoBERTa_useGT_False
W GPT_useGT_True . GPT-)_useGT_False

0.8 4 0.8

2
@
Test accuracy

Test accuracy

o
ks

0.2 0.24

0.0 0.0 -
1 2 3 4 1 2 3 4

Number of objects Number of objects

Figure 8: Test dataset accuracy results of varying the number of candidate objects in query sentence
for feed-forward head network.

5.3 Varying Number of Candidate Objects

In this experiment, we are exploring the impact of the number of candidate objects on the
accuracy of various methods. To do so, we varied the number of candidate objects, denoted by n,
from 1 to 4. For each value of n, we generated query sentences by doing all permutations of the
candidate objects as described in Sec.3.2. Specifically, for n = 1, we generated query sentences with
one candidate object, denoted by P, for n = 2, we generated query sentences with two candidate
objects, denoted by P’ where (k,n) € {(1,1),(1,2),(2,2)}, for n = 3, we generated query sentences
with three candidate objects, denoted by P;* where (k,n) € {(1,1),(1,2),(2,2),(2,3),(3,3)}, and
for n = 4, we generated query sentences with four candidate objects, denoted by P;* where (k,n) €
{(1,1),(1,2),(2,2),(2,3),(3,3), (3, 4)}-

Tables 1 and 4 demonstrate that using GPT-J instead of RoOBERTa does not result in significant
improvements. The accuracies of nearly all the methods remain at around 60%. One hypothesis for
this performance bottleneck is the number of candidate objects in the query sentence. To explore this
hypothesis, we increased the number of candidate objects in the query sentence and tracked the cor-
responding accuracies on the test dataset. Figures 8 and 9 depict these results. Two key observations
emerged: (1) Increasing the number of candidate objects can enhance accuracy, and (2) GPT-J con-
sistently outperforms RoBERTa for both ground truth/proxy and feed-forward /contrastive methods.
However, most of the performance benefits occur when the number of candidate objects is less than
3. Accuracy convergence is observed when the number of candidate objects is 4, with an accuracy
of about 60% for all methods. This observation suggests that the number of candidate objects may
not be the bottleneck as the number of candidate objects increases, even though it may impact the
accuracy for small number of candidate objects.

5.4 Zero-shot ChatGPT

The results of the zero-shot evaluation show a micro precision of 0.4468 and a micro recall of
0.4264, resulting in an F1 measure of 0.4364. On the other hand, the macro precision is 0.390 and
the macro recall is 0.3876, resulting in an F1 measure of 0.3502. It is important to note that the

Test Accuracy Test Accuracy
10 10
EEm contrastive_RoBERTa_useGT True EEE contrastive_RoBERTa_useGT_False

e contrastive_GPT_useGT _True W contrastive_GPT-|_useGT_False

0.3 08

o
o
=
@

I3
=
S
=

Test accuracy
Test accuracy

0.2 0.2

0.0 0.0
1 2 3 ' 1 2 3 4
Number of objects Number of objects

Figure 9: Test dataset accuracy results of varying the number of candidate objects in query sentence
for contrastive head network.

ChatGPT Performance

1
0.9
0.8

0.7

0.6
0.5
0.4
0.3
0.2
|||

0

\"

2 N P A &
@&(&x&&@ 6‘(@9&(’ \\élb(}o & o «@‘6‘ &q}’b%g& @\od &o L $ QQ%
N N &R N\ NS
& .;\\‘&4(’\\(\% 4 EA Qb"\\ 5’2;’ @ \\6 oo. & ((\\‘\ &
A S RO N
@ N &

2
X (’0

mclss precision mclassrecall mclass fl1

Figure 10: ChatGPT Performance

micro scale has a better result, suggesting that the class label distribution is imbalanced. To ensure
comparability, we selected the same class labels as [2]. The zero-shot ChatGPT method performed
better than the zero-shot GPT-J method, with an accuracy of 48.83% compared to 45.52%. However,
the accuracy is still smaller than most baselines and proposed methods. The detailed results are
presented in Figure 5.4. We observed three interesting patterns in the results:

1. High Precision but Low Recall: dining room, gym, hallway, closet, garage. The model pre-
dicts those room type conservatively. One of the reason we can think of is that those room
types might lack disambiguating objects and ChatGPT need further information to do the
predictions.

2. High Recall but Low Precision: bathroom, living room, staircase, kitchen, laundry room,
coference room. One of the reason might be that in the training datset of ChatGPT, there were
some object and room pairs linked more common than those in our test dataset. Therefore,
ChatGPT did the prediction aggressively.

3. Hight Precision and High Recall: bedroom, office. Bedroom and office have objects almost
exclusive to them. For example, office has monitors and desks. Bedroom has beds and pillows.

10

Table 5: Accuracies in room prediction for BERT fine-tuning. As haven been discussed in Sec.3.2,
GT represents using ground truth to select the informative objects while Proxy queries language
model to proximate co-occurrency probability.

Zero-shot Feed-forward Contrastive BERT Fine-tuning (Ours)
GPT-J(Baseline) RoBERTa(Baseline) RoBERTa(Baseline)
GT Proxy GT Proxy GT Proxy GT Proxy
52.20% 27.24% 66.20% 56.94% 64.19% 54.73% 59.35% 53.52%

Training accuracy for nyuClass

e B e
‘-‘ —— Train_nyuClass_GT
| Train_nyuClass_Proxy
08 —— Val_nyuClass_GT
‘ —— Val_nyuClass_Proxy
g |
"
ol |
5 o1
¥
< |
\\‘,J‘,M.V‘,w.‘,“__‘v_. o
",
Wiy U
VIV vm a

“ Epoch .
Figure 11: Training accuracy for fine-tuning BERT

5.5 BERT Fine-tuning

The performance test results of the fine-tuned BERT classifier are presented in Table 5. The
results show that the fine-tuning of BERT did not improve the performance compared to the baseline
except for the zero-shot GPT-J or the proposed GPT-J+feed-forward. This could be due to the small
size of the dataset used in the training process, which could have caused overfitting on the training
data. Figure 11 shows that the training accuracy reaches as high as 90% for GT co-occurrence
probability after five epochs, but the validation accuracy initially declines and remains at a low
level.

6 Conclusions

This project achieved state-of-the-art (SOTA) performance by replacing the RoBERTa-large
pretrained model with GPT-J. Despite the marginal improvement, the performance bottleneck still
exists and searching for it remains an ongoing research topic. One possible solution is to enlarge the
training dataset and finetune a large language model, similar to the method discussed in Sec.5.5.
This approach can leverage the scaling power of a large language model and prevent overfitting.
Another potential future direction is to use GPT-based networks, which incorporate common sense
knowledge during training, but most GPT models are not currently open-sourced. Multi-modal room
classification is also a promising area for future research, where not only semantic labels but also
non-semantic visual information, such as geometric structures and object relations, are considered,
similar to how humans classify rooms. As multi-modal pre-trained models like PaLM-E [3] and
GPT-4 become available, it is expected that a generalizable robot spatial perception system will be
closer to reality than ever before.

References

[1] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in

11

2]

3]

14]

[5]

[6]

7]

18]

19]

indoor environments. arXiv preprint arXiv:1709.06158, 2017. 3

William Chen, Siyi Hu, Rajat Talak, and Luca Carlone. Leveraging large language models for
robot 3d scene understanding. arXiv preprint arXiv:2209.05629, 2022. 1, 2, 3, 5, 6, 8, 10

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In arXiv preprint arXiv:2303.03378, 2023. 11

David Fernandez-Chaves, Jose-Raul Ruiz-Sarmiento, Nicolai Petkov, and Javier Gonzalez-
Jimenez. From object detection to room categorization in robotics. In Proceedings of the 3rd
international conference on applications of intelligent systems, pages 1-6, 2020. 2

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 2

Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: a real-time spatial perception system
for 3d scene graph construction and optimization. 2022. 1, 2

Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jingnan Shi,
Arjun Gupta, and Luca Carlone. Kimera: From slam to spatial perception with 3d dynamic
scene graphs. The International Journal of Robotics Research, 40(12-14):1510-1546, 2021. 1, 2

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from rghd images. ECCV (5), 7576:746-760, 2012. 3

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017. 2

12

