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Abstract

Building on [40], this study introduces an innovative ap-
proach for estimating camera trajectories and 3D scene
structures from multiview image keypoints, utilizing a pre-
trained depth prediction network. Our method sets itself
apart from previous methods [22, 20, 41] by efficiently sep-
arating camera pose estimation and depth fine-tuning. We
employ a SIM-Sync solver to optimally solve the structured
problem of camera trajectory estimation, while depth fine-
tuning, a more complex task, is addressed using backpropa-
gation. This strategic separation not only exploits the struc-
tures in camera trajectory estimation but also simplifies the
optimization loss function compared with [22, 20, 41], es-
pecially in iterative refinement within video sequences. Ad-
ditionally, our approach benefits from a more straightfor-
ward and efficient loss function design, enhancing the over-
all effectiveness of the method. The key contributions of
this work include (i) the development of a unified solver
for both camera trajectory and depth fine-tuning 1, (ii) val-
idated through experiments on the TUM dataset, and (iii) an
interactive demonstration available on Google Colab. 2

1. Introduction

Building on [40], a previous work that offers a certifi-
ably optimal solution for estimating camera trajectory and
3D scene structure directly from multiview image keypoints,
this project addresses the gap between pose graph optimiza-
tion and bundle adjustment in terms of presenting a certifi-
able algorithm that directly consumes image keypoints and
outputs poses. While the former allows efficient global op-
timization with relative pose measurements [27], the latter,

1Code available: https://github.com/XihangYU630/
SIM-Sync-MONO. We thank the authors for releasing robust-cvd [20],
PyTorch, MOSEK, open3d, TEASER++ [38] so that we can reused theirs.
The SIM-Sync and iterative fintune pipeline are written by the authors
from scratch.

2Colab available: https://github.com/GuoyuanLi123/
SIM-Sync-MONO.

though it directly utilizes image keypoints, faces challenges
in global optimization due to the complexity of camera pro-
jective geometry. The solution presented bridges this gap
through a pretrained depth prediction network. In this ap-
proach, nodes in a graph represent monocular images cap-
tured at unknown camera poses, and edges indicate pairwise
image keypoint correspondences. SIM-Sync employs a pre-
trained depth network to lift 2D keypoints into 3D scaled
point clouds, contending with scale ambiguity inherent in
monocular depth prediction. The goal of SIM-Sync is to syn-
chronize the unknown camera poses and scaling factors (i.e.
over the 3D similarity group) by minimizing the Euclidean
distances between scaled point clouds. This formulation
of SIM-Sync, although nonconvex, facilitates the design of
a certifiably optimal solver akin to the SE-Sync algorithm. It
tackles translations in a closed-form manner, while the opti-
mization of rotations and scales transforms into a quadrati-
cally constrained quadratic program. Here, Shor’s semidef-
inite relaxation technique is applied, with scale regulariza-
tion integrated into the semidefinite program to avoid scale
estimation contraction. A graphical representation of SIM-
Sync, exemplified using the TUM dataset [31], is depicted
in Fig. 1.

When the authors conducted research in SIM-Sync, they
discovered that the performance largely depend on accu-
racy of depth prior. So, our question is how to leverage
the 3D reconstruction from SIM-Sync to improve the im-
perfect depth prediction from the pretrained model. Our
project introduces a novel methodology for dense depth
estimation and 3D camera trajectory in video sequences,
optimizing camera trajectory and depth networks jointly.
Camera depth finetune can benefit from two perspectives:
From optimization perspective, we can repeatedly alternate
the camera trajectory estimation and depth finetuning. Ide-
ally, both camera trajectory and depth estimation converge
to the optimal (or suboptimal) values. From transfer learn-
ing’s perspective, pretrained depth model (a model trained
on a large dataset) may not be accurate for specific environ-
ment. However, finetuned model is expected to perform bet-
ter for unseen sequence in the same environment. Similar
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Figure 1. Illustration of SIM-Sync on the TUM dataset [31]. Feature
matching algorithms extract correspondences, which are then el-
evated using pre-trained depth networks to generate scaled point
clouds. These point clouds are integrated with the frame graph to
optimize the camera trajectory effectively.

ideas have been proposed in [22, 20, 41]. However, this ap-
proach diverges from recent trends that fine-tune pretrained
networks on input videos [41, 20, 22], especially in its de-
parture from using backpropagation on complex, nonlinear
loss functions. [20, 22] optimizes camera trajectory and but
does not finetune the depth network. [41] can alternatively
optimizes camera trajectory and finetunes depth network.
However, it hand designs very complex loss functions to
regulate both camera trajectory estimation and depth fine-
tune step. Instead, we decouple camera pose estimation
and depth fine-tuning. Camera pose estimation is addressed
with the SDP solver SIM-Sync, ensuring global optimality.
The motivation of this process is divide-and-conquer strat-
egy. This strategy exploits structural advantages in cam-
era trajectory estimation by solving it optimally, while rel-
egating the more challenging depth fine-tuning to nonlinear
solvers. Our approach also benefits from simpler loss func-
tion designs compared to previous methods.

Contributions. This project offers three contributions:

• Introduction of SIM-Sync-Mono, a unified solver that si-
multaneously addresses camera trajectory estimation
and depth fine-tuning.

• Experimental validation using the TUM dataset.
• An interactive open-sourced demonstration on Google

Colab.

In the upcoming section, we’ll delve into the related works,
which is detailed in Section 2. Following that, we will ex-
plore the methods in Section 3. The experimental outcomes
and concluding remarks will be discussed in Sections 4 and
5, respectively.

2. Related Works
We review related work on structure from motion and

visual SLAM in Section 2.1, and on certifiable geometric
perception in Section 2.2.

2.1. Structure from Motion and SLAM

Estimating camera poses and scene structure from sen-
sor data is a long-standing problem in computer vision and
robotics. This problem is variously called structure from
motion (SfM) [28] or simultaneous localization and map-
ping (SLAM) [7], where SLAM can often rely on GPS,
IMU, and even wireless communication [18]. In classic
SfM and SLAM, the problem is typically decomposed into
feature matching and geometric estimation, where feature
matching establishes keypoint correspondences between
images (and point clouds) and geometric estimation seeks
to find the best poses and structure that fit the correspon-
dences. Feature matching, closely related to representation
learning, is one of the most popular topics in computer vi-
sion with a vast amount of literature, for which we refer to
[1] for a recent review. When it comes to geometric estima-
tion, as introduced in Section 1, two popular paradigms are
the pose graph optimization formulation in SLAM and the
bundle adjustment formulation in SfM.

Recently, a number of methods seek to integrate learned
components into classic SfM or SLAM methods. [23] ex-
plored jointly optimizing depth maps, camera poses and
confidence masks for weighting the photo-metric loss dur-
ing training. [43] learns depth and ego-motion from monoc-
ular video without supervision. [39] leverages modules for
learned prediction of depth, pose, and uncertainty within a
bundle adjustment framework. DROID-SLAM [32] makes
use of a dense bundle adjustment layer to update depth map
and camera poses concurrently. [25] leverages pre-trained
depth prediction for better initialization of visual inertial
odometry.

In this work, we use a pretrained depth prediction net-
work to lift 2D image keypoints as 3D scaled point clouds
to enable global synchronization of camera poses and un-
known scaling coefficients in depth prediction.

2.2. Certifiably Optimal Geometric Perception

Certifiably optimal geometric perception refers to de-
veloping algorithms that either solve geometric estimation
problems to global optimality and produce an optimality
certificate, or fail to do so but provide a bound of sub-
optimality [37, Definition 1]. Semidefinite programming
has been the major tool for developing certifiably optimal
estimation algorithms. The pioneering work by Kahl and
Henrion [19] employs Lasserre’s hierarchy to tackle vari-
ous early perception problems, including camera resection-
ing, homography estimation, and fundamental matrix es-
timation. More recently, certifiable algorithms have been
developed for modern applications such as outlier-robust
estimation [37, 36], pose graph optimization [9, 27], ro-
tation averaging [12, 13], triangulation [3, 11], 3D regis-
tration [38, 5, 10, 17, 24], absolute pose estimation [2],
relative pose estimation [6, 14, 42], hand-eye calibration
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[15, 16, 34], uncertainty propagation in non-rigid SfM [30]
and category-level object perception [29, 35].

In this work, we develop the first certifiably optimal al-
gorithm that estimates 3D scene and camera poses directly
from 2D image correspondences.

3. Methods
Consider a graph G = (V, E), where each node i ∈ V =

[N ] is associated with an RGB image Ii ∈ RH×W×3 and
an unknown camera pose (Ri, ti) ∈ SE(3), and each edge
(i, j) ∈ E contains a set of nij dense pixel-to-pixel corre-
spondences Cij = {pi,k ↔ pj,k}

nij

k=1 with pi,k ∈ R2 the
k-th pixel location in image Ii and pj,k ∈ R2 the k-th pixel
location in image Ij . Assuming all the camera intrinsics
{Ki}Ni=1 are known, we can compute

p̃i,k = K−1
i

[
pxi,k pyi,k 1

]T
(1)

as the bearing vector normalized by the camera intrinsics.
The third entry of p̃i,k is equal to 1.

Pretrained depth prediction. Suppose we are given a
pretrained depth estimation network that, for each image Ii,
produces a depth map. Let di,k > 0 be the predicted depth
of pi,k and si > 0 be the unknown scale coefficient for
image Ii. Consequently, p̂i,k = sidi,kp̃i,k corresponds to
the 3D location of pi,k in the i-th camera frame. Effectively,
with the depth predictor, for every (i, j) ∈ E , we have a
pair of scaled point cloud measurements {di,kp̃i,k}

nij

k=1 and
{dj,kp̃j,k}

nij

k=1, as shown in Fig. 1.
The SIM-Sync formulation. We are interested in esti-

mating the unknown camera poses and the per-image scale
coefficients {xi = (si, Ri, ti)}Ni=1. We formulate the fol-
lowing optimization

min
si>0,Ri∈SO(3),ti∈R3

i=1,...,N

∑
(i,j)∈E

nij∑
k=1

wij,k ∥rij,k∥2 (SIM-Sync)

with

rij,k = (Ri(sidi,kp̃i,k) + ti)− (Rj(sjdj,kp̃j,k) + tj) .

The objective tries to minimize the 3D point-to-point dis-
tances as (Ri, ti) transforms p̂i,k, and (Rj , tj) transforms
p̂j,k into the same global coordinate frame. In (SIM-Sync),
we include wij,k > 0 for generality: these known weights
capture the potential uncertainty of the correspondences.
Usually these weights are unknown and in our experiments
we use GNC and TEASER to estimate them so that wij,k = 1
indicates inliers and wij,k = 0 indicates outliers.

Anchoring. Problem (SIM-Sync) is ill-defined. One can
choose si → 0,∀i = 1, . . . , N , t1 = t2 = · · · = tN =
constant, and the objective of (SIM-Sync) can be set arbitrar-
ily close to zero. To resolve this issue, we anchor the first

frame and set R1 = I3, t1 = 0, s1 = 1, which is common
practice in many related pose graph estimation formulations
[27].

Camera Depth Finetune: In the second stage, we for-
mulate (Depth). Note that the objective function is the same
as in (SIM-Sync). However, decision variable changes to
depth parameters. Compared with [22, 20, 41], we inno-
vatively use SDP reformulation for camera trajectory esti-
mation that potentially can improve the efficiency and ac-
curacy of camera trajectory estimation and hence improve
depth finetune. The loss function is as belows:

min
Π,(i,j)∈E,
k=1,...,nij

∑
(i,j)∈E

nij∑
k=1

wij,k ∥rij,k∥2 (Depth)

with

rij,k = (Ri(siΠ(Ii)kp̃i,k) + ti)−(Rj(sjΠ(Ij)kp̃j,k) + tj) .

and Π(Ii)k is the depth prediction of kth pixel from depth
network Π for image Ii. Note that in this step, we fix
R, t, s while optimizing the weights in the depth network
Π through backpropagation.

Algorithm 1: SIM-Sync-Mono Algorithm
Input: I,Π0

Initialize: N Number of iterations
for i = 1, . . . , N do

E ←EssentialGraphRetriever(I)
D ← Πi(I, E)
P ← PointCloudRetriever(D, I,E)
Ri, ti, si ← SIM-Sync(E,P )
Πi ← DepthFinetuner(Ri, ti, si)

end
return (RN , tN , sN ,ΠN )

Algorithm 1 shows the overall algorithm we used. In
Algorithm 1, we process image sequences I and utilize a
pre-trained depth network Π0. Initially, we set the itera-
tion count N . Each iteration involves acquiring edges E via
ORB-SLAM3 [8], and initial correspondences are established
using SIFT [21]. The CAPS descriptor [33] then refines these
correspondences, limited to 400 from SIFT, based on fea-
ture similarities. Depths are derived from the pre-trained
network [4], leading to the extraction of point clouds and
edges. Inputs fed into SIM-Sync yield rotation, translation,
and scale factors. The core innovation lies in iteratively re-
fining the depth network by incorporating these factors into
(Depth) and applying backpropagation to the head layers of
the MiDaS-v3 network. The head network of MiDaS-v3 that
features seven layers is as follows: a convolutional layer
for feature extraction, an upsampling layer for spatial en-
largement, another convolutional layer for further feature
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processing, a ReLU activation for non-linearity, followed
by a third convolutional layer, a conditional ReLU or iden-
tity layer based on output requirements, and ending with an
identity layer.

4. Experiments
Setup. We test two sequences in the TUM dataset, the

first 200 frames in the freiburg1_xyz sequence and
the first 200 frames in the freiburg2_xyz sequence, re-
spectively.3 For TEASER+SIM-Sync, we use learned depth
obtained from the MiDaS-v3 model [26, 4], with the largest
10% depth discarded. Note that MiDaS-v3 is not trained on
the TUM dataset, and we directly use its default parameter
configuration (i.e. zero-shot). For number of iterations iter-
ations, we set N = 4. We evaluate the finetuned depth es-
timation d̂i against ground truth di using root mean square
error:

RMSE =

√√√√ 1

M

M∑
i=1

∥∥∥di − d̂i

∥∥∥2 (2)

where M is number of all pixels in all images of a video. We
follow the standard evaluation protocol of visual odometry
for assessing pose accuracy, i.e. Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE). ATE quantifies the
root-mean-square error between predicted camera positions
and the groundtruth positions. RPE measures the relative
pose disparity between pairs of adjacent frames, including
both translation error (RPE-T) and rotational error (RPE-R).

Results. The quantitative results, depicted in Fig. 2 and
Fig. 3, illustrate that for the freiburg1_xyz sequence,
SIM-Sync-Mono enhances depth and relative pose estimation,
albeit with a slight decline in absolute translation accuracy,
as indicated by the green line comparing the final results
at iteration 4 to the initial at iteration 1. In contrast, the
freiburg2_xyz sequence shows improvement across all
metrics with SIM-Sync-Mono. Notably, both sequences ex-
hibit fluctuations in pose estimation but demonstrate con-
sistent advancements in depth estimation over time.

Interactive Colab. We have also open-sourced an inter-
active scripts for playing with SIM-Sync-Mono system. In this
script, the user can run the blocks and get camera trajectory
estimation from bottom up with raw data.

5. Conclusion
In this study, we have presented a novel method that si-

multaneously fine-tunes depth estimation from a pretrained
network and synchronizes camera trajectory, offering cer-
tifiable global optimality. Our experimental results affirm
the method’s effectiveness. Yet, unresolved issues persist.

3We discard the first 60 frames in freiburg2_xyz since the camera
shakes and results in blurred images.

Figure 2. Illustration of SIM-Sync-Mono on the TUM dataset [31]
freiburg1_xyz sequence.

Figure 3. Illustration of SIM-Sync on the TUM dataset [31]
freiburg2_xyz sequence.

The automatic determination of the optimal iteration count,
N , is still unsolved. Furthermore, our validation is con-
strained to two sequences from the TUM dataset, suggesting
that adopting batched backpropagation could lead to fur-
ther precision gains. Additionally, while depth fine-tuning
has primarily been applied to optimize camera trajectory
and depth predictions, its influence on transfer learning re-
mains unexplored. Future efforts will involve partitioning
the TUM dataset to distinguish between training and test-
ing sets, thereby verifying the method’s efficacy on unseen
test data in the same environment and its ability to gen-
eralize without overfitting. A notable observation is that
the finetuned depth, despite its increased accuracy, shows
blurred edges, which may imply an overfit to the training
sequences—an aspect that will be scrutinized in subsequent
research.
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