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Chapter 1

abstract

This paper presents a novel controller that yields finite-time stability for multi-agent systems with-

out collisions. We first state the problem and our setup. Then we present the novel finite-time

controller based on barrier function and the information from the neighbor agents. We present sim-

ulation results for this system, demonstrating some application like special configurations formed

by the autonomous driving agents. Finally, we present the conclusion and future work, followed

by personal contribution.
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Chapter 2

Introduction

This paper presents a novel controller that yields finite-time stability for multi-agent systems. We

first state the problem and our setup. Then we present the novel finite-time controller based on

barrier function and the information from the neighbor agents. We present simulation results for

this system, demonstrating some application like special configurations formed by the autonomous

driving agents. Finally, we present the conclusion and future work, followed by personal contribu-

tion.

Multi-agent systems have attract attention during the past decade, partly due to the potential

application in autonomous driving, exploring dangerous environment and other robot collaboration

situations. Till recently, various control problems have been introduced, namely consensus(also

named rendezvous), flocking, formation and distributed coordination. The interested reader is

referred to [1]-[4].

In spite of focus on connectivity preservation, which is of high importance, finite time stability is

not achieved. Finite Time Stability (FTS) is of essential importance because in real cases multiple

agents need to one or multiple common goals within limited time. The author in [5] focus on

continuous autonomous systems and present Lyapunov-like necessary and sufficient conditions for

a systems to exhibit FTS. While in [6]-[9] consensus and formation control problems within finite

time are well presented by several classes of protocols. And this article focuses on FTS based

on the barrier function in [10]. We achieved finite-time distributed coordination control without

collision for multi-agent system, while merely single agent is discussed in [10].

However, some disadvantages can been seen in our setup. Firstly, the agents are limited within a

circle so that they can maintain connectivity throughout time. Secondly, to simplify the protocol,

multiple static agents are placed on the circular boundary, which is difficult to achieve in real

cases.Thirdly, the system may not achieve designed coordinates since there may exist equilibrium

points except for the goal position for an agent. Because the velocity of the nearest agent is

introduced, so the equilibrium points are tough to predict. This problem is discussed in the

discussion part.

The paper is organized as follows: Chapter 3 presents the model and problem is stated. In
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chapter 4, we introduce the barrier function as well as the control law for collision avoidance

and convergence to the goal positions within finite time . Simulation can be seen in chapter 5.

In chapter 6, our conclusion and thoughts on future work are summarized . Finally, we present

personal contribution in section 7.
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Chapter 3

Modeling and Problem Statement

Consider a network of N mobile agents deployed in a known workspace W. Each agent i 2 {1, ...,N}

is modeled as a circular disk of radius r and circular agents are centered at known positions ~xi,

i 2 {1, ...,N}. Moreover, we assume all kinetic agents are located within a bounded circle of radius

R. On the boundary, there locate M static agents with radius of r. With collision avoidance of

agents on the boundary, kinetic agents remain in the circle according to designed barrier function.

As a result, network connectivity is preserved and one agent receives the position and velocity

information of the other agents. Now consider one kinetic agent i. Its motion under single integrator

dynamics is

~̇xi = ~vi,

where ~xi, ~vi 2 Rn. The problem of reaching to a specified goal position in finite time can be

formulated mathematically as follows:

9t* < 1 s.t 8t > t* ||~xi(t)� ~⌧i|| = 0,

where ~⌧i is the desired goal location, while that of collision avoidance can be written as:

8t > t0 ||~xi(t)� ~xj(t)|| > dc,

where ~xi(t) and ~xj(t) represent the location of the agents and t0 is the starting time. Here,we

model that dc is bigger than 2r. Also, we assume that the distances between goal positions

||~⌧i� ~⌧j || > dc. We also assume that one agent starts sufficiently far away from the other agents so

that ||~xi(t0)� ~xj(t0)|| > dc. What we should do is to design a feedback-law ~vi such that all agents

reach their own goal positions within finite time while maintaining safe distance between each

other. Specifically speaking, we design a controller based on a barrier function and information of

other agents.
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Chapter 4

Motion Coordination

All the agents initiate in the closed region where the wireless communication links can be estab-

lished. As the agents are moving inside the region during the process, their wireless communication

can remain stable, thus resulting in connectivity maintenance. As mentioned in Section 3, for any

one of the agents, for example the i th agent ~xi, can not only know the location of the boundary but

also perceive the position and velocity of its nearest agent, for example ~xj . We assume for now that:

1) The goal positions ~⌧i , i 2 {1 , 2 , ...,n} are static and,

2) There are no physical obstacles in the region and,

3) The distance between any two agents’ goal positions k~⌧i � ~⌧jk > dc and,

4) All n agents are equal, i.e., there is no leader among them.

Since all the agents are equal, it suffices to focus on one agent. We seek a continuous feedback-

law ~ui for the i th agent to achieve multi-agent coordination with obstacle avoidance. More specif-

ically, we seek a barrier-function based controller for the system. We define the barrier function

for the i th agent as follows:

Bi(~xi, ~xj) =
k~xi � ~⌧ik2

k~xi � ~xjk � dc +
1
✏

where ✏ � 1 is a very large number. We define the controller as follows:

~vi =

8
<

:
�k1krxiBik↵�1rxiBi + (1� 2( ~xi�~⌧i)

T· ~vj
x0(rxiBi)T· ~vj )~vj ~x 6= ~⌧i

~0 ~x = ~⌧i
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where k1 > 0 and 0 < ↵ < 1

With this controller, we have the following result:

Theorem 1: Under the control law, the point ~x = ~⌧i is FTS equilibrium for the system and the

agent will remain collision avoidance w.r.t any other agents.

Before presenting the proof, we present some useful Lemmas:

Lemma 1:Under the control law, the point ~x = ~⌧i is an equilibrium for the system, i.e.,

lim
~xi!~⌧i

�k1krxiBik↵�1rxiBi + (1� 2(~xi � ~⌧i)T · ~vj
x0(rxiBi)T · ~vj

)~vj = ~0

Proof: Consider:

( ~xi�~⌧i)
T· ~vj

(rxiBi)T· ~vj =
[2( ~xi�~⌧i)

T� k ~xi�~⌧ik
2

x0
( ~xi� ~xj)

T]· ~vj
( ~xi�~⌧i)· ~vj

= 2- k~xi � ~⌧ik2
x0

( ~xi� ~xj)· ~vj
( ~xi�~⌧i)· ~vj

=2-k~xi � ~⌧ik · ( ~xi� ~xj)· ~vj
x0k ~vjk cos ✓

Therefore,

lim
~xi=)~⌧i

( ~xi�~⌧i)
T· ~vj

(rxiBi)T· ~vj = 2 =)

lim
~xi)~⌧i

(rxiBi)
T· ~vj

( ~xi�~⌧i)T· ~vj = 1
2 )

lim
~xi)~⌧i

(1� 2( ~xi�~⌧i)
T· ~vj

x0(rxiBi)T· ~vj )~vj =
~0

Since rxiBi(xi) = 0, lim
~xi)~⌧i

�k1krxiBik↵�1rxiBi = 0

which leads to

lim
~xi!~⌧i

�k1krxiBik↵�1rxiBi + (1� 2( ~xi�~⌧i)
T· ~vj

x0(rxiBi)T· ~vj )~vj =
~0

Lemma 2: Time derivative of the barrier function Ḃi satisfies:

Ḃi = �k1krxiBik↵+1
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Proof:

Ḃi = (rxiBi)T · ~vi + (rxjBi)T · ~vj

= (rxiBi)T ·[�k1krxiBik↵�1rxiBi+(1� 2( ~xi�~⌧i)
T· ~vj

x0(rxiBi)T· ~vj )~vj ]+
k ~xi�~⌧ik2

x0k ~xi� ~xjk ·(~xi� ~xj)T · ~vj

= �k1krxiBik↵+1+(2· ~xi�~⌧i
x0

� k ~xi�~⌧ik2

x2
0

· ~xi� ~xj

k ~xi� ~xjk )·[(1�
2( ~xi�~⌧i)

T· ~vj
x0(rxiBi)T· ~vj )~vj ]+

k ~xi�~⌧ik2

x0k ~xi� ~xjk ·

(~xi � ~xj)T · ~vj

= �k1krxiBik↵+1 + 2 · ( ~xi�~⌧i)
T· ~vj

x0
� (rxiBi)T · ~vj · 2( ~xi�~⌧i)

T· ~vj
x0(rxiBi)T· ~vj )

= �k1krxiBik↵+1

Lemma 3: In the domain D0 = {x|k~x� ~xjk > dc}, B(x)  ✏kx� ⌧ik2

Proof:

kx� xjk � dc =) kx� xjk � dc � 0

=) kx� xjk � dc +
1
✏ � 1

✏

=) 1
kx�xjk�dc+ 1

✏
 ✏

=) Bi =
kx�⌧ik2

kx�xjk�dc+ 1
✏
 ✏kx� ⌧ik2

Lemma 4: rxiBi is non-zero everywhere except the equilibrium point ~⌧i and the point

~x = ~⌧i + 2
k ~xj�~⌧ik+dc� 1

✏
k ~xj�~⌧ik ( ~xj � ~⌧i)

Proof:

Denote rxiBi =
@Bi
@ ~xi

,rxjBi =
@Bi
@ ~xj

, andx0 = k~xi � ~xjk � dc +
1
✏

rxiBi = 2~x�~⌧i
x0

� k~x�~⌧ik2

x2
0

~x�~o
k~x�~ok

Solve the equation gives:

x = ⌧i + 2
kxj�⌧ik+dc� 1

✏
kxj�⌧ik (xj � ⌧i)

or

x = xj + 2
k⌧i�xjk+dc� 1

✏
k⌧i�xjk (⌧i � xj)
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Lemma 5: In any closed, compact domain D ⇢ Rn containing point ⌧i and excluding the region

D̄ = {x|kx� [xj + 2
k⌧i�xjk+dc� 1

✏
k⌧i�xjk (⌧i � xj)]k < r, kx� [xj + 2

k⌧i�xjk+dc� 1
✏

k⌧i�xjk (⌧i � xj)]k < r} ,where

r is an arbitrary small positive number, the gradient of the barrier function satisfies:

krxiBik � ckx� ⌧ik

where c>0

Proof: It can be easily verified that rxiBi(⌧i) = 0 . Choose D1 = {x | kx � ⌧ik < �}, where

� is a very small positive number. Choose domain D = D\D1 Recall that D doesn’t include

the ray D̄, so D̃ does not include the point as in Lemma 4 . Hence, from Lemma 4 , at any

point x 2 D̃,rxiBi 6= 0 and since D̃ is a closed domain, we can find c1 = min~x2D̃
krxiBik
k~x�⌧k > 0 .

Therefore,we have that 8x 2 D̃, krxiBik � c1kx� ⌧ik

Next, consider D2 = {x | kx � ⌧ik  �} . In a very small neighborhood of ⌧i , the Hessian

matrix r2Bixi � 0 (i.e. r2Bixi is a positive definite matrix). Therefore, using the gradient

inequality (First-order condition for convexity), we have that 8x 2 D2 ,

Bi(~⌧i) � Bi + (rxiBi)T (~⌧i � ~x)

=) 0 � Bi � (rxiBi)T (~x� ~⌧i)

=) (rxiBi)T (~x� ~⌧i) � Bi

It is obvious that Bi can be bounded as Bi � c2k~x� ~⌧ik2 . Also, using Cauchy-Schwartz inequal-

ity, we have that (rxiBi)T (~x� ~⌧i)  krxiBikk~x� ~⌧ik Therefore, we have that

krxiBikk~x� ~⌧ik � (rxiBi)T (~x� ~⌧i)

� Bi � c2k~x� ~⌧ik2

=) krxiBik � c2k~x� ~⌧ik

Now we are ready to prove Theorem 1:

Proof: From Lemma 4, we have that rxiBi = 0 at the equilibrium point ⌧i and at the point

x = ⌧i +µ(o� ⌧i) where µ takes the value as per Lemma 3 . Lets assume that the initial condition

is such that x (t0) doesn’t lie on the ray D̄ defined as per Lemma 4. Consider the open domain

around the goal location D0 as defined in Lemma 2 . Define D = D0\D̄ since D̄ is a closed domain

and D0 is open, domain D is an open domain around the equilibrium ⌧i.

Choose the candidate Lyapunov function

Vi = Bi

From Lemma 2 we have:

V̇i = �k1krxiBik↵+1
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From Lemma 5 we have:

krxiBik � c0k~x� ~⌧ik =) k~x� ~⌧ik  krxiBik
c0

From Lemma 3 we have:

Vi = Bi  ✏k~x� ~⌧ik2  ✏ · krxiBik2

c20

=) krxiBik2 � c20
✏ Bi

Therefore, we have:

V̇i = �k1krxiBik↵+1  �k1
c↵+1
0
✏↵+1 (Bi)

↵+1
2 = �k1

c↵+1
0
✏↵+1 (Vi)

↵+1
2

If we set k1
c↵+1
0

✏
↵+1
2

= c > 0 and 0 < ↵+1
2 = � < 1, then

V̇i  �cVi
�

which satisfies the condition for FTS.
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Chapter 5

Simulation

To test out the efficacy of our designed controller, we demonstrated the whole process using com-

puter simulation. Simulation mainly tested one simple case, one complex case randomly chosen

and one arranged as a letter.

For all three cases, the radius of agents is r = 0.99, the radius of total move area R = 98 (large

enough R is one of the keys to success).

In the barrier function:

Bi =
k~xi � ~⌧ik2

k~xi � ~xjk � dc +
1
✏

We chose dc = 2, ✏ = 10000 for all three cases. dc should be slightly larger than 2r, and ✏ much

larger than 1. Too large dc or too small ✏ will cause agents never get close even when no collision

will occur.

In the controller:

vi = �k1krxiBik↵�1rxiBi + . . .

We chose ↵ = 1
3 , and k1 differ from agents, magnitude in 103.

2000 obstacles are arranged on the edge evenly, ensuring no agents can cross it. The radius

of obstacles is the same as agents. In other words, obstacle can be directly viewed as still agents

(velocity is strictly 0).

Besides that, in discrete simulation the whole process is divided into 2500 status, every interval

is 10�4s.

In simple case, 4 agents are randomly set the original positions and goal position, only ensure

that two goal positions are not too close. And in complex case, the number of agents increased to

20. They can all reach the goal in 2500 status. At last, we artificially select goal positions, arrange

them in the shape of an H or an A. They can reach the goal successfully too.

For the simulation, most cases tested are successful, only few ones will meet some hard situation

that 1 or 2 agents are stuck. Nevertheless, the efficacy of this controller is satisfactory overall.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, we have investigated the distributed coordination problem with collision avoidance in

finite time. The idea is inspired by [10]; yet,we developed a controller for multiple agents.However,

the drawback of designed controller is that there are some trivial equilibrium points. Considering

the complexity to discuss these points, we adopt simplicity. And we simplify the discussion of the

points where the denominator stands at zero.

6.2 Future work

1)Developing a second-order control law for the multi-agent system,

2)Discussing the situation where the destinations of the agents are dynamic,

3)Trying different and maybe more strict set-up, for example, agents’ sensing and connection areas

are constricted.
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